
Principal 
Component 
Analysis and its 
applications



The Curse of 
Dimensionality



Thousands or even millions of  features for 
each instance of training data.

Training is slower 
Harder to find a good solution 

Real world problems , It is possible to 
reduce the number of features cosiderably , 
without losing much information (e.g. 
MNIST data set)
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The number of training instances required 
to reach a given density grows 
exponentially with number of dimensions.

More Dimensions  =  Greater Risk of                  
Overfitting 



Dimensionality 
Reduction 
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Projection
Manifold 
Learning

The two main 
approaches for 
dimensionality 

reduction
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Principal component analysis
PCA is by far most popular dimensionality 
reduction algorithm .
PCA in simple terms:
It finds the closest hyperplane to the data             

points and then it projects the data onto it .
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Choosing the right Hyperplane
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Select the hyperplane that Preserves the 
maximum variance.
PCA identifies the axis that preserves the 
maximum variance, and second axis 
orthogonal to first that accounts for largest 
remaining variance

Principal component 
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Guess the PCs  for the given data points.
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So how can we find the 
principal components of a 
training set ?
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The Singular value 
decomposition 
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The SVD separates any matrix into simple rank 
one  pieces in the order of importance.

+
The size of the singular values ( ) will 
decide whether to retain or ignore a value.
Keep larger  , discard smaller   .                                      
The principal components are The orthogonal 
vectors that are retained.  
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Performing  SVD
The singular value theorem for is Eigen value 
theorem for and .
 _ Eigen values  and vectors of 

The Eigen vectors of are  row entries of 
The matrix contains the principal components
Now , using  
Or  in simple terms 
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What is the reduction in size ?
Instead of transmitting or processing  
whole training data set  
Just  use  the  dominant  linear combination 
of  rank 1 matrices.
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When compression is well 
done, you can’t notice the 
difference between original 
and compressed versions
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Performing PCA with SVD
Data = n samples and m features per   

sample.
Center each row of matrix by subtracting 
mean from each measurement 
Then apply the SVD for covariance matrix 
Largest singular value ( ) __ greatest 
variance _most information in  
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PCA for face 
recognition
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Eigen faces 
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Yale data base

Eigen faces 

The mean face
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Convert each N x N 
image to N^2 x 1 

vector

Calculate the Mean face 
from the Training data ௜

ெ
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்
Find the Eigen values 

and vectors of 
covariance matrix

These dominant Eigen 
vectors(PCs) are the 

Eigen faces

But ………
For the covariance matrix the 

no of Eigen values and vectors 
are N^2 (too many)

Intractable solution 

Computationally feasible method

A 
ଵ

ெ
்

Find the Eigen values 
and vectors of matrix 
A, then using this find 

PCs

For the matrix A the no of 
Eigen values and vectors are M 

(far less than covariance 
matrix)
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Using the matrix A and its Eigen vector, 
matrix it is easy to find the principal 

components 𝒖𝒊𝒔
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Convert the 
input image 
into a face 

vector

Normalize 
the Face 
vector

Project the 
Normalized face 

vector onto 
Eigenspace

W= 

𝟏

𝟐

𝒌

Calculate the distance 
between input weight vector 
and all the training weight 

vectors
Recognized 

as label

If distance 
< 

Threshold 

Unknown 
face
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Thank  you
Any  Queries  ?
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and  have the 
same non-zero eigenvalues, 
and if one has more 
eigenvalues than the other, 
then these are all equal to 0.


