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Convolutional Neural Networks
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Convolutional Neural Networks
Example for convolution operation
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Convolutional Neural Networks
Example for pooling operation
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Convolutional Neural Networks
Invariance properties of CNN
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Convolutional Neural Networks
learning multiple levels of representation of increasing complexity
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How to generalize
Convolutional Neural Networks

to ”non-natural” data?
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Graph Convolutional Neural Networks
Applications - social networks in computational social sciences
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Graph Convolutional Neural Networks
Applications - sensor networks in communications
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Graph Convolutional Neural Networks
Applications - functional networks in brain imaging
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Graph Convolutional Neural Networks
Applications - meshed surfaces in computer graphics
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Graph Convolutional Neural Networks
Approaches

1 Spectral

based on spectral graph theoretic approach.
uses signal processing techniques defined over graphs.

2 Spatial

directly define the convolution on the graph vertices.
algorithms can be deduced as a message passing mechanism.
For detailed discussion refer [1].
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Spectral Graph Convolutional Neural Networks
Prelimenaries - Graph Theory

We want to process signals defined on undirected and connected
graphs G = (V ,E ,W )

V is a finite set of n vertices, E is a set of edges, W ∈ Rn×n is a
weighted adjacency matrix.

Graph Laplacian G , is defined as L = D −W ∈ Rn×n and normalized
definition is L̃ = In − D−1/2WD−1/2 where D is the degree matrix.

As L is a real symmetric psd matrix, it has a complete set of
orthonormal eigenvectors {ul}n−1

l=0 ∈ Rn, known as the graph Fourier
modes.

Their associated ordered real nonnegative eigenvalues {λl}n−1
l=0 ,

identified as the frequencies of the graph.

L is diagonalized by the Fourier basis U = [u0, . . . , un−1] ∈ Rn×n

such that L̃ = UΛUT
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Spectral Graph Convolutional Neural Networks
Prelimenaries - Graph Theory

Example for W , D and L
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Spectral Graph Convolutional Neural Networks
Prelimenaries - Graph Fourier Transform and graph convolution

For any function f ∈ RN defined on the vertices of graph G , its
graph Fourier transform f̂ is defined by

f̂ (l) = 〈ul , f 〉 =
N∑

n=1

u∗l (n)f (n)

The inverse transform is,

f (n) =
N−1∑
l=0

f̂ (l)ul(n)

Convolution operator on graph ∗G is defined in the Fourier domain
such that

f ∗G y = U
(
(UT f )� (UT y)

)
,

where � is the element-wise Hadamard product.
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Spectral Graph Convolutional Neural Networks
Prelimenaries - Spectral filtering of graph signals

We define f = (f1, . . . , fn) ∈ Rn as a signal on n nodes on a graph
G , i.e, fi ∈ R : i ≤ n is a signal component on node: i .

A signal f is filtered by the filter F as

y = F f = UTgθ(Λ)Uf

where gθ(Λ) ∈ Rn×n = diag(gθ(λ1), . . . , gθ(λn) is a diagonal matrix.
The function gθ() : R → R is defined as frequency response function
of the filter F .

The graph filter is defined in terms of the function of eigen values of
graph Laplacian, gθ(λ).
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Spectral Graph Convolutional Neural Networks
Significance of eigen values of graph Laplacian

The eigenvectors of L̃ corresponding to lower frequencies or smaller
eigenvalues are smoother on graphs.

The smoothness corresponding to the k−th eigenvector can be
quantified as, ∑

i∼j

wij [uk(i)− uk(j)]2 = uTk L̃uk = λk

⇒ a smoothly varying graph signal will have eigenvectors with
smaller eigenvalues.
This is under the assumption that neighborhood of topologically
identical nodes would be similar.

Smoothness functional of the entire graph is defined as,

SG (f ) =
∑
i∼j

wij(fi − fj)
2 = f T L̃f (1)
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Spectral Graph Convolutional Neural Networks
Significance of smoothly varying graph signals

Localization in space ⇔ smoothness in frequency domain.
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Spectral Graph Convolutional Neural Networks
Significance of smoothly varying graph signals

Figure 1: The first 5 eigenvectors of the normalized graph Laplacian corresponding to an arbitrary
graph. Each line attached to a vertex is proportional to the value of the corresponding eigenvector
at the vertex. Positive values (red) point up and negative values (blue) point down.

Eigen vectors of smaller egien values are relatively smooth.
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Spectral Graph Convolutional Neural Networks
Significance of smoothly varying graph signals - Practical considerations

In the real world applications, the signals over the graph could be
noisy.

We should filter out high frequency content of the signal as it
contains noise.

Low frequency contents (eigenvectors corresponding to lower
eigenvalues) should be maintained as it contains the robust
information.

Smoothness corresponds to spatial localization in the graphs.

Spatial localization is important in the graph learning to infer local
variability of the node neighborhoods.
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Spectral GCNNs – state-of-the-arts
ChebyNet [2]

Based on polynomial parametrization of localized filters

gθ(Λ) =
K−1∑
k=0

θkΛk (2)

where the parameter θ ∈ RK is a vector of polynomial coefficients.

The value at vertex j of the filter gθ centered at vertex i is given by
(gθ(L))i,j =

∑
k θk(Lk)i,j , where the kernel is localized via a

convolution with a Kronecker delta function δi ∈ Rn.

Localization property-

If dG is the shortest path distance, dG (i , j) > K implies (LK )i,j = 0.
Spectral filters represented by K th order polynomials of the Laplacian
are exactly K -localized.

Higher orders of L̃ is approximated with Chebyshev polynomials.
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Spectral GCNNs – state-of-the-arts
GCN - Graph Convolutional Network [3]

A linear model of ChebyNet.

Limit the convolution operation to K = 1 in Equation 2, i.e,

gθ ? x ≈ θ0x + θ1(L− In)x = θ0x − θ1D
− 1

2 AD−
1
2 x

Successive application of filters of this form then effectively convolve
the k th-order neighborhood of a node.

where k is the number of successive filtering operations or
convolutional layers in the neural network model.

In practice, above equation is redefined as,

gθ ? x ≈ θ
(
In + D−

1
2 AD−

1
2

)
x .

with a single parameter θ = θ0 = −θ1.

In + D− 1
2 AD− 1

2 now has eigenvalues in the range [0, 1.5]
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Spectral GCNNs – state-of-the-arts
Summary

Table 1: Frequency response function and output of spectral filters of GCNNs

Network Freq. response (gθ()) Output, y

ChebyNet [2] gθ(λ) =
∑K−1

k=0 θkλ
k y = U(

∑K−1
k=0 θkΛk)UT f

GCN [3] gθ(λ) =
(
θ(1− λ)

)
y = θ(I − L̃)f

GraphHeat [4] gθ(λ) = (1 + exp (−sλ)) y = (θ0I + θ1e
−sL̃)f

IGCN [5] gθ(λ) =
(
θ(1− λ)

)K
y = θ(I − L̃)K f
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Spectral GCNNs - application in semi-supervised
classification
Neural network architecture

The network architecture defined in GCN [3] consists of two layers
that takes the form

Z = softmax(F(L̃) ReLU(F(L̃)XΘ(1))Θ(2))

F(L̃) ∈ Rn×n is the filter
X ∈ Rn×d is the input feature matrix
θ(1) ∈ Rd×c1 - filter parameters of first layer (c1 is the no: of filters)
θ(2) ∈ Rc1×c2 - filter parameters of 2nd layer (c2 is the no: of filters)
ReLU is the activation function defined as y = max(0, x)
softmax(xi ) = exp(xi )/

∑
j exp(xj) applied in row wise to matrix Z .

Cost function optimized is the cross entropy function, L, defined as,

L = −
∑
i∈Y

c2∑
j=1

yij ln(Zij)

where Y is the set of nodes whose labels are known
yij is defined as 1 if label of node i is j and 0 otherwise.
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Graph Convolutional Neural Networks
Tool for implementations

Various methods for deep learning on graphs and other irregular
structures.

Consists of an easy-to-use mini-batch loader.

A large number of common benchmark datasets.

Transforms, both for learning on arbitrary graphs as well as on 3D
meshes or point clouds.
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