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Convolutional Neural Networks

Architecture
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Convolutional Neural Networks

Example for convolution operation

Input Volume (+pad 1) (7x7x3)
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Convolutional Neural Networks

Example for pooling operation
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Convolutional Neural Networks

Invariance properties of CNN

Translation Invariance

Rotation/Viewpoint Invariance
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Convolutional Neural Networks

learning multiple levels of representation of increasing complexity

Successive model lavers learn deeper intermediate representations
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Graph Convolutional Neural Networks

Applications - social networks in computational social sciences
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Graph Convolutional Neural Networks

Applications - sensor networks in communications

(€]

Application
server

Objective
(V)

Visual Sensor 1

10/28



Graph Convolutional Neural Networks

Applications - functional networks in brain imaging
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Graph Convolutional Neural Networks

Applications - meshed surfaces in computer graphics
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Graph Convolutional Neural Networks
Approaches

@ Spectral

o based on spectral graph theoretic approach.
e uses signal processing techniques defined over graphs.

@ Spatial
o directly define the convolution on the graph vertices.
e algorithms can be deduced as a message passing mechanism.
o For detailed discussion refer [1].
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Spectral Graph Convolutional Neural Networks

Prelimenaries - Graph Theory

We want to process signals defined on undirected and connected
graphs G = (V,E, W)
o V is a finite set of n vertices, E is a set of edges, W € R"*" is a
weighted adjacency matrix.

Graph Laplacian G, is definedas L=D—W € R"™"™ and normalized
definition is L = /,, — D=12WD~1/2 where D is the degree matrix.

As L is a real symmetric psd matrix, it has a complete set of
orthonormal eigenvectors {u/};’:_Ol € R", known as the graph Fourier
modes.

Their associated ordered real nonnegative eigenvalues {)\/}/~,
identified as the frequencies of the graph.

L is diagonalized by the Fourier basis U = [u, . . ., tup—1] € R™"
such that L = UANUT
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Spectral Graph Convolutional Neural Networks

Prelimenaries - Graph Theory

o Example for W, D and L

Labeled graph
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Spectral Graph Convolutional Neural Networks

Prelimenaries - Graph Fourier Transform and graph convolution

e For any function f € RV defined on the vertices of graph G, its
graph Fourier transform f is defined by

@ Convolution operator on graph ¢ is defined in the Fourier domain
such that

frgy=U((UTF) o (UTy)),

where © is the element-wise Hadamard product.
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Spectral Graph Convolutional Neural Networks

Prelimenaries - Spectral filtering of graph signals

o We define f = (f1,...,f,) € R" as a signal on n nodes on a graph
G,ie f; €R:i<nisasignal component on node: i.

o A signal f is filtered by the filter F as
y =FFf=UTgy(N)UF
o where gy(A) € R™" = diag(go(A1), - - -, 80(An) is a diagonal matrix.

o The function gg() : R — R is defined as frequency response function
of the filter F.

@ The graph filter is defined in terms of the function of eigen values of
graph Laplacian, gyg(\).
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Spectral Graph Convolutional Neural Networks

Significance of eigen values of graph Laplacian

@ The eigenvectors of L corresponding to lower frequencies or smaller
eigenvalues are smoother on graphs.

@ The smoothness corresponding to the k—th eigenvector can be
quantified as,

3 wilun(i) — )P = uf L = N

e = a smoothly varying graph signal will have eigenvectors with
smaller eigenvalues.

e This is under the assumption that neighborhood of topologically
identical nodes would be similar.

@ Smoothness functional of the entire graph is defined as,

Se(f) = Y wylfi— £ = TLf (1)

inj
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Spectral Graph Convolutional Neural Networks

Significance of smoothly varying graph signals

A
Smooth spectral filter function

o Localization in space < smoothness in frequency domain.

19/28



Spectral Graph Convolutional Neural Networks

Significance of smoothly varying graph signals

BE8E G

Figure 1: The first 5 eigenvectors of the normalized graph Laplacian corresponding to an arbitrary
graph. Each line attached to a vertex is proportional to the value of the corresponding eigenvector
at the vertex. Positive values (red) point up and negative values (blue) point down.

o Eigen vectors of smaller egien values are relatively smooth.
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Spectral Graph Convolutional Neural Networks

Significance of smoothly varying graph signals - Practical considerations

o In the real world applications, the signals over the graph could be
noisy.

o We should filter out high frequency content of the signal as it
contains noise.

o Low frequency contents (eigenvectors corresponding to lower
eigenvalues) should be maintained as it contains the robust
information.

@ Smoothness corresponds to spatial localization in the graphs.

@ Spatial localization is important in the graph learning to infer local
variability of the node neighborhoods.

21/28



Spectral GCNNs — state-of-the-arts

ChebyNet [2]

@ Based on polynomial parametrization of localized filters

K—

go(N) =D O\ (2)

k=0

fuy

where the parameter 6 € R¥ is a vector of polynomial coefficients.

@ The value at vertex j of the filter gy centered at vertex i is given by
(go(L))ij = >4 0k(L¥);j, where the kernel is localized via a
convolution with a Kronecker delta function §; € R".

@ Localization property-

o If dg is the shortest path distance, dg(i, ) > K implies (L¥);; = 0.
o Spectral filters represented by K order polynomials of the Laplacian
are exactly K-localized.

@ Higher orders of Lis approximated with Chebyshev polynomials.
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Spectral GCNNs — state-of-the-arts

GCN - Graph Convolutional Network [3]

@ A linear model of ChebyNet.

@ Limit the convolution operation to K = 1 in Equation 2, i.e,

go * x ~ Oox + 01 (L — I,)x = Oox — 6,D 2 AD™ 3 x

@ Successive application of filters of this form then effectively convolve
the k*h-order neighborhood of a node.

e where k is the number of successive filtering operations or
convolutional layers in the neural network model.

@ In practice, above equation is redefined as,

go*x ~0(l, + D"2AD?)x.

with a single parameter 0 = 6y = —6,.
o I+ D~3AD~? now has eigenvalues in the range [0, 1.5]
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Spectral GCNNs — state-of-the-arts

Summary

Table 1: Frequency response function and output of spectral filters of GCNNs

Network Freq. response (80()) Output, y
ChebyNet [2] g(N) = Yo Oy = Uy O N)UTF
GCN 3 &) = (61— ) y =60 - D)f

GraphHeat [4] gg( )= (1+exp (—s))) y = (0ol + 01e73L)f
IGCN [5] g(N) = (01 —1)" y =001 - D)<
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Spectral GCNNs - application in semi-supervised
classification

Neural network architecture

@ The network architecture defined in GCN [3] consists of two layers
that takes the form

Z = softmax(F (L) ReLU(F(L)x0™M)0?)

F(L) € R™" is the filter

X € R™9 is the input feature matrix

01 € R¥*< _ filter parameters of first layer (c1 is the no: of filters)
03 € R*< _ filter parameters of 2nd layer (¢, is the no: of filters)
ReLU is the activation function defined as y = max(0, x)

o softmax(x;) = exp(xi)/ >, exp(x;) applied in row wise to matrix Z.

o Cost function optimized is the cross entropy function, £, defined as,

L= —Ziya‘ In(Zj)

i€y j=1

o where ) is the set of nodes whose labels are known
o y;i is defined as 1 if label of node i is j and 0 otherwise.
25/28



Graph Convolutional Neural Networks

Tool for implementations

@ PyTorch

geometric

@ Various methods for deep learning on graphs and other irregular
structures.

o Consists of an easy-to-use mini-batch loader.
@ A large number of common benchmark datasets.

o Transforms, both for learning on arbitrary graphs as well as on 3D
meshes or point clouds.
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