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Abstract
Compressed sensing theory has provided a great potential for reconstructing signals from
significantly under-sampled measurements. The algorithms developed for CS reconstruc-
tion are of iterative nature, which hinders its usage to time-critical applications such as
medical imaging. But, recent advances in deep Neural Networks and their enormous capa-
bility in data driven learning, has been extended to solve ill-posed inverse problems, such as
compressed sensing. There have been many instances in which deep learning has provided
success in CS reconstruction. Besides the deep Feed-forward Neural Nets, the success of
Deep Generative Models, such as VAEs and GANs, in learning the underlying distribution
and statistics of data, will further aid the efficacy of reconstruction procedure.
The main aim of this project is to reduce MRI acquisition time taken for collecting entire
k-space measurements and constructing the image, i.e. to construct a good approximation
of the MR image only with fewer samples in k-space. This thesis presents an algorithm,
which combines both iterative optimization and Deep unsupervised learning based method.
The interesting thing about this approach is instead of searching among the sparse priors,
we search in a space constrained by the output of generator network, which eliminates the
need for sparsity assumption in a hand-crafted basis.
The algorithm makes use of ADMM based iterative optimization, with the statistical prior
of MR image learned through info-GAN trained on MR brain images data set and a pro-
jector which trained to structure the latent space. It performs denoising like update with a
composition of generator and projector. Although this work has been directly inspired by f-
CSRG [1] algorithm, there are some crucial aspects that are tailored according to the need
of CS-MRI, first the under-sampling is done in k-space and not it pixel domain, second
the images are of size 256 × 256, hence the neural networks architecture has been scaled
and modified accordingly; furthermore, the images are not vectored, in order to eliminate
the requirement of huge under-sampling matrix. Also the under-sampling is slightly dif-
ferent from traditional randomized sampling used in general CS and is physically feasible
for MRI modality. This algorithm reconstructs the image within ten iteration of ADMM
updates, and the SSIM scores are above 0.6 and raises up to 0.75 and in rare cases goes
around 0.5.
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Chapter 1

Introduction

Magnetic Resonance imaging is a widely used safe and non-invasive medical imaging tech-
nique, with a reliable resolution and tissue contrast. One of the important drawback of
Magnetic Resonance Imaging is longer acquisition times which causes patient discomfort,
delay in critical situations and also there is high probability for movement induced arti-
facts. One way to overcome this drawback is to apply compressed sensing technique to
MR images(CS-MRI), i.e. to reconstruct the MRI image from significantly fewer measure-
ments, in contrast to Shannon-Nyquist constraint. This project explores a deep unsuper-
vised learning based approach for CS-MRI reconstruction.

1.1 Related Work

With traditional CS, sparsity in pixel or a transform domain is required for reconstruction,
which is formulated as a regularized optimization with the sparsity constraint. This as-
sumption requires handcrafted basis that promote sparsity, and in most cases the signals
are not exactly sparse but approximately sparse, therefore this assumption might not result
in accurate reconstruction and requires an expert knowledge for handcrafting a sparse basis
based on the nature of the signal. On the other hand there are learning based approaches for
CS reconstruction. This section discusses some of the learning based compressed sensing
MRI reconstruction methods.
One form of learning based method is Dictionary learning MRI reconstruction (DLMRI)[3],
which adaptively learns the sparsiying basis and simultaneously reconstructs the image
from under-sampled measurements, but this takes long computational time due to iterative
optimization nature.
Another approach deep ADMM net [4] for CS-MRI reconstruction defines an unrolled
deep neural network over the data flow graph derived from iterative ADMM optimization
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method for CS based MRI and learns the parameters of the algorithm from data.
Accelerating magnetic resonance imaging [5] is a deep learning based method in which
a deep convolutional neural network learns to map under-sampled to and true images and
tries to reconstruct the true image, when an under-sampled MR image is presented.
Bora et al. [6] has proposed the use of generative models for compressed sensing, in which
the CS optimization is regularized by constraining the latent space, this has inspired the
use of generative models for CS. First generative model based CS-MRI reconstruction is
proposed in DAGAN [7] for CS-MRI, uses a conditional GAN conditioned on zero filled
reconstructed MR image, with U-net based architecture and modified loss function.
Structure preserving CS-MRI reconstruction using GAN, similar to DAGAN uses a zero
filled reconstruction conditioned GAN with the generator trained based on GAN loss aug-
mented with pixel domain l1 loss and a SSIM based loss with a "residual in residual
blocks" [8] in a U-net fashion.
A network called RefineGAN is introduced in [9] The generator contains two networks
one which reconstructs the image and the other which refines the reconstruction and they
propose a novel loss called cyclic loss.
"Fast compressive sensing recovery using generative models with structured latent vari-
ables" [1] proposes f-CSRG algorithm (fast compressed sensing reconstruction using gen-
erative models) which uses a trained GAN and projector network in a ADMM setup to
perform general scenario CS reconstruction. This is the primary inspiration for the method
used in this project.

1.2 Overview of the approach

The approach presented in [1] has been extended for the case of CS-MRI reconstruction,an
Info-GAN (Information maximizing GAN) is trained on MRI brain images with the stan-
dard GAN loss, which learns the statistics of the data and generate brain like images i.e. it
maps a latent variable to a brain like MR image. Then a projector network is trained using
a mean squared error loss in order to learn the latent vector that had generated a MR image.
Once the training of info-GAN and projector is complete, we use composition of generator
and projector as a denoiser in plug and play ADMM [10] optimizer. After few iteration,
around ten the output of the ADMM optimizer is the reconstructed MR image.
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Figure 1.1: Flow of the approach

1.3 Contributions

The projector network architecture is a fully convolutional neural network unlike the fully
connected network used in f-CSRG algorithm. A continuous code word is used as the latent
code. Since the compressed sensing on MRI images is performed in acquisition domain,
we perform the least square optimization step, the first step of ADMM in frequency domain
and denoising is performed in pixel domain and hence there is inter conversion from fre-
quency to spatial domain between the first and second step of ADMM algorithm. The Least
squares optimization step is not performed in vectored form of images, rather we propose
a stacked way of optimization, in which we perform column wise least squares and stack
all the optimized columns before being further processed.
Other deep learning methods use either a supervised approach or a unrolled iterative algo-
rithm into a neural network or a VAE like conditional GAN, conditioned on zero filled re-
construction, this method reconstructs directly from under-sampled k-space measurements
and structured latent space without the need for zero filled reconstruction in an unsuper-
vised fashion, and is faster compared to unrolled algorithms.
The results and details of the implementation and description of the data set is presented
in chapter 6, although we couldn’t get perfect reconstruction, one can subjectively notice
a good amount of pattern being reconstructed. we are restricted by the quality of images
being generated by the generator. Most of the reconstructed SSIM scores for compression
ratios 1.33, 2 and 2.66 are above 0.6, sometimes goes upto 0.8, in rare cases it goes to
around 0.5.
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Chapter 2

Literature Survey

2.1 Compressed sensing using generative model

This method was proposed by Bora et al [6], in which instead of employing a sparsity
constraint and optimizing to find a reconstruction they used a generative models VAE and
GAN. The proposed CSGM algorithms reconstructs the image by performing gradient de-
scent to optimize the latent space variable z, so that the corresponding image G(z) has
minimum measurement error ‖AG(z)− y‖2.
A fully connected neural network architectures with vectored inputs were used, which
might not be efficient for large size MRI data of 256 × 256. Moreover, though they are
using a constraint on norm of latent vector, the latent space is still entangled to generate a
proper reconstruction. This work can provide some inspiration to our algorithm except for
constraining the optimization objective based on norm of the latent word.

2.2 Deep De-Aliasing GAN

DAGAN a refinement learning based U-net inspired generator is proposed in [7] for CS-
MRI reconstruction. Which is an end to end network that reduces the artifacts in zero filled
reconstruction of under-sampled k-space data. This method also augments content based
loss to the standard GAN loss, the content based loss include pixel domain and frequency
domain MSE and perceptual loss.
It uses a conditional GAN paradigm conditioned on ZFR images, and thus similar to a
auto-encoder architecture. DAGAN needs to be trained with a data-set containing both true
MRI images and ZFR images, which may acts as a bottle neck if the data is huge, especially
when the data is huge it takes a lot of storage space and makes it difficult to use when the
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memory requirement is constrained.

2.3 GAN with cyclic loss

Similar to DAGAN, this method generates full MRI image from its corresponding zero
filled reconstruction, but it proposes a two fold chain networks called reconGAN and refine-
GAN [9] with a cyclic data consistency loss. It is a variant of convolutional auto-encoder
and GAN with fully residual connections.
This model came up with a novel loss, cyclic data consistency loss in order to overcome
the extreme case problem of wrong mapping from ZFR to any existing fully reconstructed
image, although this model works very well the implementation complexity and memory
requirements are huge.

2.4 Structure Preserving CS-MRI reconstruction

This method [8] uses a zero filled reconstruction conditioned GAN with multiple residual
in residual dense blocks and uses a patch based discriminator, instead of discriminating
the whole image. The model also incorporates SSIM loss and pixel domain l1 loss to the
Wasserstien GAN loss.
The interesting things about this method is it uses structure preserving components such as
patch based discriminator and SSIM loss augmentation. But the network architecture is too
deep with multiple residual in residual blocks that is difficult to train in computationally
and storage constrained environments.

2.5 Fast compressed sensing recovery using generative net-
works

This project is the extension of this f-CSRG algorithm [1] to CS-MRI modality. It uses a
composition convolutional GAN based generator models and a fully connected projector
network as a denoiser in a plug and play ADMM optimizer. This algorithm claims best
results with information maximization GAN due to its disentangled latent space.
This method is particularly attractive because of its complete unsupervised nature, without
any requirement for a zero filled reconstruction for each point in the data set and simplicity
in principle and implementation.
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Chapter 3

Information Maximizing GAN

3.1 Introduction to GANs

Generative Adversarial Networks(GANs) are a deep unsupervised generative models, which
try to generate or mimic training data like objects generally from a low dimensional noisy
latent vector.The basic architecture of GANs contain a Generator deep neural network and
a discriminator network, the two networks play a min-max adversarial game in order to
learn and generalize the underlying true data distribution i.e. Discriminator will try to do
its best to properly discriminate the true data points from generated(fake) data points, On
the other hand generator will try its best to fool the discriminator network.
A properly learned GAN’s generator can produce output similar to but not same as data
points. The output samples are also representative of the underlying factors of variation in
the training distribution, for example digits with unseen strokes faces with unseen poses
etc. GANs are useful for augmenting the data-set to make it more exhaustive and expand it
in a useful manner, they are used to learn the statistics of data distribution from few sam-
ples of data in an unsupervised way without any parametric assumptions, they are used for
super-resolution, they are used to generate photo realistic images and cartoon characters
and for many other impressive and useful applications.

3.2 GANs learn the underlying data distribution

The generator network and discriminator network play two player min-max game and the
two networks are adversaries to each other. This kind of competitive framework enables
GAN to learn the data distribution. The standard GAN loss and learning is described by
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the following equation,

min
G

max
D

V (D,G) = min
G

max
D

Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))] (3.1)

Discriminator(D) will try to maximize the log likelihood of binary classification problem,
Generator(G) tries to minimize the log-probability of its samples being classified as ’fake’
by the discriminator(D), thus promoting the adversarial game.

Figure 3.1: Flow-chart depicting the adversarial learning in GANs [11]

The learning is performed through mini-batch stochastic descent, for each passage of
single update iteration for k-steps the discriminator is updated with both generated data
and true data. after few discriminator update steps the generator is updated. The number of
discriminator update steps(k-steps) is a hyper-parameter, which is usually set to one.
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Figure 3.2: Generative Advesarial Network Model: The expression for standard GAN loss
function is shown in Red and the expressions in black show the binary cross entropy loss
for each network

Algorithm 3.1: GAN training algorithm using Mini-batch SGD

1 for each training iteration do
2 for k steps do
3 Sample m noise samples {z1, . . . zm} from noise prior pg(z)

4 Sample m training data examples {x1, . . . , xm}
5 Update discriminator by ascending its gradient:

∇θd

1

m

m∑
i=1

[logD(x)] + [log(1−D(G(z)))]

6 end
7 Sample m noise samples {z1, . . . zm} from noise prior pg(z)

8 update the generator by descending its stochastic gradient:

∇θd

1

m

m∑
i=1

[log(1−D(G(z)))]

9 end

However in practical implementation aspects a tweak to loss function and update is per-
formed, where instead of using the GAN loss as it is, the labels are flipped for generated
images to fool the discriminator.
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3.3 Disentangling the representations using information
maximizing GAN

The standard GAN model doesn’t promote control of output with random noise input, the
input and output of the generator are entangled. This problem can be solved by Infor-
mation maximizing GAN or Info-GAN, in short. Info-GAN is an information theoretic
extension[12] to GAN framework, in which the control variables are introduced along with
noisy latent space and control variables are learned automatically by the model.
Apart from Generator and discriminator, the Info-GAN uses a auxiliary network that pre-
dicts the control variables that generates a particular instance of modeled data. The aux-
iliary network learns the control codes through minimizing the mutual information based
loss function.

Figure 3.3: Info-GAN modality: C is the latent code word, Z is the noise latent variable
(flow: bottom to top)

3.3.1 Encouraging the mutual information maximization

Maximization of mutual information between the control codes and the generated images
is an important trick for learning meaningful representations. Mutual information between
two random variables quantifies the shared information content of the two variables, Intu-
itively it is the reduction in entropy of a variable given the knowledge of another random
variable.

I(c;G(z, c)) = H(c)−H(c|G(z, c)) (3.2)
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The equation (3.2) gives the expression for mutual information required for the case of
Info-GAN, H(·) represents the entropy, G(·) represents the Generator function, z and c are
the latent noise vector and code vector respectively
Combining (3.2) and (3.1), we can reformulate the Info-GAN min-max game as

min
G

max
D

VI(D,G) = min
G

max
D

V (D,G)− I(ĉ;G(z, c)) (3.3)

Calculating true mutual information is often intractable[13], techniques such as variational
information maximization is used in [12], in order to train the generator through Mutual In-
formation maximization a auxiliary network is introduced, which shares the same weights
as that of discriminator, to interpret the generated image, but with an extra overhead that
predicts the control code that generated the image.
The variational information maximization simplifies the (3.3) to training auxiliary model,
as shown by the following equations. Finding I(c;G(z, c)) directly is not possible since
it requires the posterior P (c|x) in prior which is not possible, instead a lower bound is
obtained by an approximating auxiliary distribution Q(c|x).

I(c;G(z, c)) = H(c)−H(c|G(z, c))

= Ex∼G(x,c)[Eć∼P (c|x)[logP (ć|x)]] +H(c)

= Ex∼G(x,c)[DKL(P ||Q)︸ ︷︷ ︸
≥0

+Eć∼P (c|x)[logQ(ć|x)]] +H(c)

≥ Ex∼G(x,c)[Eć∼P (c|x)[logQ(ć|x)]] +H(c)

(3.4)

Using the above variational information maximization technique we can describe the Info-
GAN min-max game (3.3) as

LI(G,Q) = Ex∼G(x,c)[Eć∼P (c|x)[logQ(ć|x)]] +H(c)

min
G,Q

max
D

VInfoGAN(D,G,Q) = V (D,G)− λLI(G,Q)
(3.5)

In practical implementation, the auxiliary distribution is parameterized as a Neural Net-
work, called Auxiliary Network or Q network. In most cases the Q network shares all
the weights with the discriminator, except for a last fully connected layer which predicts
the output. The addition of this network doesn’t increase the computational cost of GAN
model[12].
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3.3.2 The control codes

The type and distribution of the control codes play crucial role in learning the class of se-
mantic features pertaining to the data, there are two main types of control codes used, one
is categorical control variables and the other one is continuous control variables. The mu-
tual information based loss for training depends on the type and distribution of the control
codes.

Categorical control codes

This may be used to select the class or type of generated image,for example in MRI brain
images it can control the slice type. The codes is a one hot encoded vector with length
of the code equal to number of classes. we do not explicitly choose the code, instead we
give a randomly sampled batch of codes and the model learns to map them automatically,
although not in any particular order of encoding. For categorical codes the Q model also
should output a one hot encoding, which is enabled by using a softmax non-linearity in the
output layer of auxiliary model.
The loss function can be directly used from mutual information maximization, according
to (3.5), but it can be simplified as a categorical cross entropy between the predicted code
and input code, since the code entropy is drawn from a known distribution and it is usually
a small constant value and lambda is used to scale the mutual information loss function,
which can be set to one.

Continuous control codes

These type of codes may control the style of images generated, usually the codes are sam-
pled from uniform or Gaussian distribution, the output of the Q network tries to predict the
mean and variance of the distribution, for mean, a linear output is used and for variance a
sigmoid function is used, since it is a positive value.
The mutual information loss function for optimization is inferred from the predicted mean
and variance. Alternatively, in the case of Gaussian there is no need for this sophistication,
instead we can use the mean squared error loss with linear output.
The algorithm for training the Info-GAN is presented in 3.2
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3.3.3 Algorithm and implementation

Algorithm 3.2: Info-GAN training algorithm

1 for each training iteration do
2 for k steps do
3 Sample m latent samples {z1, . . . zm} from noise prior pg(z) and control

codes
4 Sample m training data examples {x1, . . . , xm}
5 Update discriminator by ascending its gradient:

∇θd

1

m

m∑
i=1

[logD(x)] + [log(1−D(G(z)))]

6 end
7 Sample m latent samples {z1, . . . zm} from noise prior pg(z) and control codes
8 Update the generator weights by descending its stochastic gradient and Q

network head weights:

∇θd

1

m

m∑
i=1

[log(1−D(G(z)))]

9 The loss update for Q network head is based on type and distribution of control
code being used.

10 end

3.4 Summary

GANs learn the underlying data distribution from the samples presented to them through
a mini-max adversarial game between generator and discriminator network. An improved
version of GAN that can generate the data points in a disentangled fashion is the Info-
GAN model, which learns the mapping between latent space to output via a information
maximization scheme, fundamentally it tries to predict the code corresponding to the gen-
erated image through a network bifurcating from discriminator called as auxiliary network.
This Info-GAN network is used as the generative model in this project which has maxi-
mum structure with respect to information between generated images and latent space in
its latent space.

12



Chapter 4

Alternating Direction Method of Multi-
pliers

Most important optimization problems, such as LASSO regression combine two terms

minimize F1(x) + F2(x) for x in a convex set (4.1)

F1 involves l1 type norm and F2 involves l2 type norm, though both are convex, they don’t
mix well, i.e. the optimization doesn’t occur among the two terms in a balanced way. The
solution for this problem is to split the algorithm and alternate between the two. Split
algorithms are more efficient than mixed approach[14].
One such split algorithm is ADMM(Alternating direction method of multipliers), the main
forward steps that describe this algorithm are dual decomposition, augmented Lagrangian
or method of multipliers.
The flow starts from the primal problem and its Lagrangian, next goes to dual problem
and dual decomposition of it, and then comes the augmented Lagrangian which makes the
Lagrangian more robust and ends at ADMM.

4.1 Primal to Dual

The primal problem is

Minimize f(x) subject toAx = b (4.2)
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Now the primal problem is combined with the constraint and optimized using Lagrangian
multiplier y. The Lagrangian of above problem is

L(x,y) = f(x) + yT (Ax− b) (4.3)

The optimal points x∗ and y∗ form the saddle points of (4.3): minx maxy L, The key
is to separate the above into primal and dual problem, Minimize L(x,y) over x and
Maximize m(y) = L(x∗(y),y) respectively.
The primal update and dual update can be sequenced using steepest ascent as shown:

xk+1 = argmin L(x,yk)

yk+1 = yk + sk(Axk+1 − b)
(4.4)

In short the above equation is, find xk+1 using some initial dual variable yk and then fol-
low(ascend) ∇m = Axk+1 − b with a step sizesk, and iterate this sequence until conver-
gence.

4.2 Dual Decomposition

Instead of performing one large minimization of (4.3), multiple mini-optimizations can
be performed if the objective function f(x) is separable, i.e if it can be decomposed into
f1(x1) + . . . + fN(xN) where xi

′s are sub-vectors of x. We can partition the columns of
A = [A1 . . . AN ] in a similar fashion. The Lagrange’s function now decomposes into N
smaller Lagrangian s:

f(x) + yT (Ax− b) =
N∑
1

Li(xi,y) =
N∑
1

[fi(xi) + yTAixi −
1

N
yTb] (4.5)

Now these N-minimizations can be solved in parallel, the decomposed dual problem with
N dual problems solved in parallel.

xk+1
i = argminLi(xi,y

k)

yk+1 = yk + sk(Axk+1 − b)
(4.6)

The new xk+1
i are concatenated into (Axk+1, then the resulting y is distributed into N

processors that execute separate minimizations in the next iteration of (4.6), which gives
an enormous time advantage compared to single large minimization.
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4.3 Augmented Lagrangian

To relax strict convexity on f(x) and make the Lagrangian robust, it is penalized by aug-
menting it with a penality term scaled by a scalar ρ.

Lρ(x,y) = f(x) + yT (Ax− b) +
ρ

2
||Ax− b||2

The augmented Lagrangian is also known as method of multipliers, this improves the con-
vergence guarantees.
The main drawback of this augmented Lagrangian is the panality term makes the La-
grangian inseparable even if the objective function is separable, which otherwise could
give a performance advantage.

4.4 ADMM

The drawback of augmented Lagrangian can be avoided by using a split of f(x) (possibly
a l1 - l2 split), and substituting a new variable z in one of the split with a new constraint
x = z. The new constraint joins the orginal and forms Ax + Bz − c = 0, and the opti-
mization objective is f(x) + g(z)

min
x,z

f(x) + g(z)

Such that : Ax + Bz− c = 0
(4.7)

The augmented Lagrangian is

Lρ(x, z, y) = f(x) + g(z) + yT (Ax + Bz− c) +
ρ

2
||Ax + Bz +−c||2 (4.8)

which is scaled to a simple form by using a dual variable y scaled by
1

ρ
, thus reducing the

augmented Lagrangian to, which leads to scaled ADMM[15]

Lρ(x, z,y) = f(x) + g(z) +
ρ

2
||Ax + Bz +−c + u||2

;where, u =
y

ρ
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Finally, the ADMM update steps are following, which include extra z variable update apart
from primal and dual update, which is called as auxiliary update:

x(k+1) = argmin
x

(f(x) +
ρ

2
||Ax + Bz(k) − c + u(k)||2) (4.9)

z(k+1) = argmin
z

(g(z) +
ρ

2
||Ax(k+1) + Bz− c + u(k)||2) (4.10)

u(k+1) = u(k) + Ax(k+1) + Bz(k+1) − c (4.11)

ADMM can achieve acceptable accuracy quickly, but to reach high exact accuracy in could
be slow and take time.

4.5 ADMM for Image recovery

The image recovery problem as formulated in B.1 can be solved using the ADMM method.
The set of equations for using ADMM for image reconstruction are:

argmin
x

F (x) + λG(x) (4.12)

argmin
x,z

F (x) + λG(z) ;S.T. x = z (4.13)

Where F (·) is a fidelity term and G(·) is a prior or constraint that signal must satisfy,
for example it could be the l1-norm for a sparsity prior in traditional compressed sensing
reconstruction.
The augmented Lagrangian for the above problem 4.13 is

L(x, z,u) = F (x) + λG(z) +
ρ

2
||x− z + u||2 (4.14)

and the ADMM updates are:

xk+1 = argmin
x

(F (x) +
ρ

2
||x− zk + uk||2) (4.15)

zk+1 = argmin
z

(λG(z) +
ρ

2
||xk+1 − z + uk||2) (4.16)

uk+1 = uk + xk+1 − zk+1 (4.17)
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Here the update step one is an inversion step since the F (x) is the fidelity term, a norm
error; the second step can be seen as denoising step, in which we are finding a z close to
noisy x given by x+u. This modular structure makes ADMM favorable to use a variant in
which it is not required to mentionG(z) ahead of running the ADMM iterations and instead
replace the second step with an off the shelf denoising algorithm z(k+1) = Dσ(xk+1 + uk)

this variant is called as plug and play ADMM[10], which is used for image restoration
applications such as Denoising, and Super-resolution.

Pros and Cons of Plug and Play ADMM

Although the Plug and Play ADMM is of ad-hoc nature, empirically it is observed to per-
form better than some state of the art methods.
The main challenge is imposed on theoretical analysis, since the denoiserDσ is most of the
times non-linear and doesn’t have closed form expression. For a generalDσ convergence is
not known, since it requires the prior G(·) to be convex and closed to ensure proper conver-
gence. But for off the shelf denoiser Dσ one can not point out a corresponding prior G(·),
and also it is unclear if it can be derived or found.

4.6 Summary

ADMM points out a way to effectively optimize problems that involve unbalanced objec-
tive that can be split into separate objectives, for example LASSO regression. It makes use
of dual decomposition and augmented Lagrangian for optimizing the problem of interest.
A plug and play nature of ADMM was proposed for image recovery applications in which
one can plug in a off the shelf denoiser into the second step, although it seems to be of an
ad-hoc nature, it is observed to provide descent results for image recovery problems.
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Chapter 5

Methods and Contributions

5.1 Data set

The data set which was used for training and testing is MICCAI grand challenge 2013 T1
weighted MRI brain images data set, which contain subject wise files in ".nii.gz" (NifTI)
format [16] each containing around 265 slices (sliced along transverse plane).
For extracting the image data from NifTI format, a python Neuro-imaging library, "Ni-
babel" [17] was used and the extracted image data is dumped into a pickle format, first
hundred files are selected from the entire folder and from each 160 useful and informative
slices were taken. The training data set contains 16000 images (i.e. 160 × 100), and a
similar method is followed for collecting testing images from a separate training images
folder. While converting from ".nii.gz" format the image gray scale is normalized to the
range [−1, 1].
At each iteration of training a batch of 32 slices are selected at random from among 160
slices and a file is chosen at random from a set of 100 files without replacement. Each
epoch is trained with 30 batches of data.

Figure 5.1: A sample of MCCAI dataset images
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5.2 Latent Space Design

A infoGAN or GAN maps a latent noise space to the data to be generated. In an InfoGAN
setup since information maximization is performed over code vector, the latent space is the
concatenation of noise vector and code vector or vectors.
Different dimensions of latent vectors are tested and empirically it was found that a length
of 256 dimension code provides a better performance. If the dimension is too small it gets
difficult to train the network and if it is too large there are problems with projector network
learning.
A 256 dimension latent vector is used with first 192 dimension being noise and remaining
64 dimensions being the code word. Each component of noise is sampled from a standard
normal distribution and the code vector used is of continuous nature, each component is
sampled according to uniform distribution of range [−1, 1].
A discrete code was tested with 160 dimension one hot encoding, assuming the discrete
feature to be the slice index, but it is found in the data that there are no exact correspondence
of slides across files. Hence this did not work well for information maximization and
moreover a discrete type feature is not easily found apart from the slice index, therefore
we used continuous codes without any assumption of code and image correspondence.
Another possible way that was hypothesized, but not tested is to design the code according
to the distribution of first 64 principle component coefficients.

5.3 Info-GAN: generation of data like samples

The generator of the info-GAN maps a 256 dimensional latent space to 256 × 256 gray
scale image, which is a brain like MRI image after training.
The generator architecture is shown in the figure 5.2, it contains all transposed convolu-
tional layers, with kernel size 4 × 4, each is followed by ReLU non-linear activation and
batch normalization, except the last layer which is activated with Tanh non-linearity. First
layer is convolved with stride 1 and padding 0, remaining layers are convolved with stride
2 and padding 1.
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Figure 5.2: Generator Network: Each is followed by a ReLU non-linear activation and
Batch Normalization, except for the last layer which uses Tanh activation layer. (Size
of output mentioned below each layer, and kernel(k), stride(s) and padding(p) mentioned
between the layers)

The discriminator is a classification network, that tries to distinguish between true im-
ages and generated images, this uses all convolutional layers with kernel size 4× 4, for last
but one layer the kernel size is 1× 1, each is followed by Leaky-ReLU activation and then
a Batch Normalization, except the last layer which is with sigmoid non linearity. All the
layers use stride of 2 and padding of 1, last but one layer and final layer uses stride of 1 and
no padding.
The discriminator is bifurcated into two, one is for classification as discussed above and
other branch is connected to a auxiliary network, that learns to predict the code word that
had generated the image.
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Figure 5.3: Discriminator Network: Each followed by Leaky-ReLU and a Batch Normal-
ization, except for last which used sigmoid activation

Figure 5.4: Auxiliary network: bifurcates from sixth layer of discriminator, this network
predicts the latent code that had generated the image. The intermediate layer is followed
by ReLU and Batch Normalization, and last layer is a linear

Training the Info-GAN

The GAN learns through optimizing the standard GAN loss 3.1, and along with stepping
the gradient through generator, the auxiliary network is trained, the loss function used for
optimizing the auxiliary network is Mean squared Loss between the output and latent code
that generated the image. The classic algorithm for training the info-GAN is present in the
algorithm 3.2.
The training is carried out with multiple restarts for first 100 epochs a learning rate of 0.002

was used, then for next 20 epochs a learning rate of 0.0001, for next 20 epochs a learning
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rate of 1 × 10−5 and final 30 epochs are trained with a learning rate of 5 × 10−6. ADAM
optimizer is used for both GAN and auxiliary network gradient descent with β1 = 0.5 and
β2 = 0.999.
The plot of generator, discriminator and auxiliary network loss function Vs training itera-
tion is shown in the following figures 5.5 and 5.6

Figure 5.5: Discriminator loss(green) and Generator loss(orange) Vs iteration plot: An
adversarial game between generator and discriminator can be observed here. The loss is a
binary cross entropy loss

Figure 5.6: Auxiliary Network Loss function plot Vs iteration

Generated images after training the info-GAN are shown in the following figure 5.7
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Figure 5.7: Sample of generated images after the training

5.4 Projector Network: Constraining the latent space

The projector network learning the mapping between MRI image and the corresponding
256 dimensional latent code, The architecture is almost the reverse of generator architecture
just with a small change in number of feature maps in each layer. The architecture of
projector network is depicted in the figure 5.8.

Figure 5.8: The projector network: maps the image to latent code. (from right to left)
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Training the projector network

The objective cost function is mean squared error loss between the predicted latent variable
and the true latent variable that had generated the image. ADAM optimizer with default
beta values is used for gradient descent. For first 150 epochs a learning rate of 0.0001. was
used and for final 50 epochs of training the learning rate is set to 10−4.
First projector training modality in f-CSRG algorithm [1] is used 5.9, in which a latent
variable is sampled from its distribution and passed through the trained generator, and
then the output of generator along with a small noise added, acts as an input the projector
network which try to minimize the mean squared error between predicted latent variable
and true latent variable.
The projector loss function plot is given in the following figure 5.10

Figure 5.9: Projector training modality: The projector will try to find the latent variable
close to the latent variable that generated a particular image, in MSE sense
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Figure 5.10: Projector loss Vs Training iteration: MSE loss function is being optimized

5.5 Under-sampling of k-space: CS-MRI

Under-sampling in k-space domain is performed using a linear mask, i.e. the mask ran-
domly selects few rows from among 256 rows. The number of rows that are randomly
selected based on the compression ratio. The under-sampling masks and corresponding
matrix are shown below 5.11

(a) for compression ratio 1.33 (256/192) (b) for compression ratio 2 (256/128)

Figure 5.11: undersampling masks and corresponding matrices

5.6 ADMM+info-GAN+Projector: CS-MRI Reconstruc-
tion

After training the info-GAN and projector network, we combine the generator Ggen(·),
projector Gproj(·) with ADMM 4.13 algorithm for the reconstruction of MRI Images from
under-sampled k-space measurements.
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The algorithm takes under-sampled k-space measurements y and under-sampling matrix Φ

as input, the trained generator and projector are used in the PnP ADMM iteration denoising
step. Since the CS-MRI is performed in Fourier space we apply the ADMM optimization
in Fourier domain and then perform inverse fourier transform before the denoising step in
the ADMM iteration. ADMM steps for CS-MRI reconstruction are shown in the figure
5.12 below.

Figure 5.12: ADMM iteration for CS-MRI reconstruction

We have a trained generator Ggen(), Projector Gproj() and the under-sampling matrix
Φ, y is under-sampled k-space image. First step is a least squares step performed in Fourier
domain, then we pass the real part of inverse Fourier transform of the first step output to
composition of generator and projector, this is the denoising step. We again Fourier trans-
form the denoised output in previous step so that it can be used in first step for next iteration,
and the final step is dual variable update. The reconstructed MR image is present in z af-
ter the completion of iterations, we choose the z such that its under-sampled k-space has
minimum error with the measurements y in a mean squared error sense. It is observed that
the minimum error occurs within ten iterations of ADMM, therefore maximum number of
iterations is set to 10.
The first least squares step of ADMM is performed in a column wise fashion without vec-
toring the 256 × 256 k-space image, and finally stack the optimized columns together, we
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call this process as stacked optimization. The entire algorithm of info-GAN regularized
ADMM for CS-MRI reconstruction is presented in the algorithm 5.1

Algorithm 5.1: info-GAN regualrized ADMM for CS-MRI reconstruction

1 train the info-GAN according to and save the generator model
2 train the projector network according to and save projector model
3 get test images from the data set
4 generate under-sampling mask U based on required compression ratio
5 construct denoiser (i.e. composition of saved generator and projector models from

step 1 and 2)
6 for each testimage do
7 Function usamp(testimage, U):
8 kspace = F(testimage)

9 y = U × kspace
10 return y

11 ρ =
1√
256

12 x
(0)
f = a random 256× 256 image

13 maxiter = 10

14 z
(0)
f = zeros(256× 256), dtype = complex

15 u
(0)
f = zeros(256× 256), dtype = complex

16 for iter ≤ maxiter do
17 perform ADMM steps as in 5.12
18 store z(iter) in a list

19 end
20 ẑ = argminzy − usamp(z, U)

21 end

5.7 Summary

Information maximizing GAN regularized ADMM algorithm makes uses two important
networks, one the generator from GAN model and a projector network. Here we used a
fully convolutional projector network unlike the fully connected network in f-CSRG algo-
rithm. In this scenario convolution layers found to work well compared to fully connected
layer, with fully connected layer the MSE converges and saturates at around 0.8 whereas
with convolutional layers it progressively decreases and reaches upto 0.5 MSE.
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The ADMM denoiser uses composition of generator and projector functions, which was
derived through the formulation of regularizing the optimization problem with respect to
latent variable and generator output. The results of this algorithm are described in the next
chapter.
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Chapter 6

Results, Discussion and Conclusion

6.1 Results and Discussion

The reconstructed results performed for compression ratios 1.33, 2, 2.66 are presented in
this section. Each result of reconstruction shown in the following figures contain four
columns, the first column represent original test images, second column contain the recon-
structed results, third column contain the intermediate image that corresponds to x variable
in the ADMM algorithm 5.12 and last column shows the zero filled reconstructions i.e. the
inverse Fourier transform of under-sampled k-space image. Along with the reconstructed
image results, SSIM (structural similarity index measure) and mean squared error plots
taken for five trails of reconstruction experiments are shown, each trail consists of recon-
struction of randomly selected ten test images(slices) from the test data set.
The first compression ratio 1.33 corresponds to a under-sampling mask of 192 randomly
selected rows, similarly compression ratios of 2 and 2.66 corresponds to under-samplings
masks of 128 and 96 randomly selected rows respectively, mean SSIM metric which is
performed with 11 × 11 Gaussian window is chosen as the best metric to evaluate the re-
construction of MR image since it takes account of local statistics and structural properties
of an image unlike the global evaluation metrics such as Mean squared error and PSNR.
Although the MSE metric is also evaluated to show the contrast.
We could not objectively evaluate the image generation by info-GAN, since we do not have
any explicit classes or measures to evaluate metrics like inception score, and evaluation of
GANs is still an open problem and varies from application to application. the only way to
evaluate the generation is to subjectively analyze the generated images. One claim is that
we can not get reconstructions better than the quality of generated images, we are upper
bound by the generated images quality.
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(a) (b)

Figure 6.1: Reconstruction results with compression ratio 1.33; column 1: original, col-
umn 2: Reconstruction, column 3: intermediate image, column 4: ZFR

(a) 5 snapshots of SSIM (b) 5 snapshots of MSE

Figure 6.2: SSIM and MSE between the true image and reconstructed image for compres-
sion ratio 1.33: each color represents a trial of reconstruction, the horizontal axis is the test
image number in each trial, vertical axis shows the score of evaluation metric
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(a) (b)

Figure 6.3: Reconstruction results with compression ratio 2; column 1: original, column
2: Reconstruction, column 3: intermediate image, column 4: ZFR

(a) 5 snapshots of SSIM (b) 5 snapshots of MSE

Figure 6.4: SSIM and MSE between the true image and reconstructed image for compres-
sion ratio 2: each color represents a trial of reconstruction, the horizontal axis is the test
image number in each trial, vertical axis shows the score of evaluation metric
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(a) (b)

Figure 6.5: Reconstruction results with compression ratio 2.66; column 1: original, col-
umn 2: Reconstruction, column 3: intermediate image, column 4: ZFR

(a) 5 snapshots of SSIM (b) 5 snapshots of MSE

Figure 6.6: SSIM and MSE between the true image and reconstructed image for compres-
sion ratio 2.66: each color represents a trial of reconstruction, the horizontal axis is the test
image number in each trial, vertical axis shows the score of evaluation metric
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6.2 Conclusion

Information maximizing GAN regularized ADMM is directly inspired from the fast com-
pressed sensing reconstruction using generative model (f-CSRG) algorithm [1], although
that was applied for pixel domain compressed sensing this project has extended its applica-
tion for compressing sensing in Fourier domain, since the main vision of this project is to
reduce the acquisition times, therefore compressed sensing on MRI needs to be performed
in acquisition domain, i.e. the k-space (Fourier domain).
There was no open access raw k-space data set found, we assumed the equiv lance between
the true k-space data and 2D-Fourier transform of MR image, and performed the under-
sampling on the Fourier Transform image.
The reconstruction results are not so effective, although one can easily see a good pattern
is learned and reconstructed. Since the the effectiveness of reconstruction is constrained
by the the quality of generated images by the generator, i.e. the quality of reconstruction
can not be better than the quality of generated images. If one could generate a good quality
images the quality of results would be more and hence will lead to a SSIM score close to
one for all test images.
For the above results SSIM score is above 0.55 and extends up to 0.8 for compression ratio
1.33; the SSIM score is above 0.5 and extends up to 0.75 SSIM score for compression ratio
2; and the SSIM score is above 0.45 and extends upto 0.75 for compression ratio 2.66. With
increasing compression ratio the SSIM score is decreasing slightly.
In the second step of ADMM 5.12 only the real part is taken into consideration, and hence
there is some loss of phase information, If we could incorporate the imaginary part, the
results are expected to improve.
Only one type of CS-MRI under-sampling mask was evaluated, but there are many other
types of CS-MRI under-sampling paradigms, this mask was chosen because most of the
MRI acquisition is carried out in the linear scan fashion along horizontal or vertical direc-
tion and it is easier to implement and test this type of mask
Other consideration to be taken into account include the choice of evaluation metrics, the-
oretical bounds and recovery guarantees, which are discussed below.

Choice of Evaluation Metrics

Evaluation metrics play an important role for analyzing the results and determining whether
the results justify conclusions. Similarly, in analyzing the reconstruction quality of various
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compressed sensing recovery approaches it plays a key role. Often times the metrics are
biased to show the efficiency over other existing methods or sometimes the metrics are not
useful for certain application domains.
To overcome this, rather than only computing favorable metrics, it is important to evaluate
wide variety of metrics and get an unbiased view of the results and in turn conclusions.
In this project for evaluating the results we have used SSIM measure and Mean squared
error, We chose SSIM to be an important quality metric for MRI and mean squared error is
often times misleading metric.
This section discusses about various metrics useful for analyzing the reconstructed signals.

Reconstruction Error

It is the average Euclidean distance between the recovered images and ground truth images,
this is an average error in direct pixel domain, thus it may or may not provide a holistic
metric about the results.

PSNR: Peak Signal to Noise Ratio

PSNR is a most commonly used metric for measuring the quality of reconstruction of
compressed images. Higher the PSNR better is the quality of reconstruction of the image.

PSNR = 10 log10(
MAX2

I

MSE
) (6.1)

Where I is the original image and K is the reconstructed image the mean squared er-
ror(MSE) is given the average norm error between each pixel value in original and recon-
structed image.

SSIM: Structural Similarity Index Measure

SSIM is a perception based model, in which degradation of image is considered as change
in structural information, unlike the absolute error metrics such as PSNR ans MSE, this
measures the structural information, which is encodes as the statistical similarity between
neighborhood pixels in an image.
SSIM is calculated over various windows (block) of an image, let say x and y are two same
location windows in original and reconstructed image then the SSIM is given by 6.2

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c1)
(6.2)
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where; µ is the mean with respect to subscript,
σ is the variance(var and covariance) of subscript variables
c1 and c2 are division stability constant,to stabilize when a weak denominator occurs

NRMSE: Normalized root mean squared error

Root mean squared error is most commonly used error metric in estimation problems. It
is the square root of second sample moment of the differences between observed and pre-
dicted values.

Classification accuracy or domain specific measures

Sometimes it is appropriate to use or device metrics that are very specific to application
domain. for example if we take the MNIST data set the reconstruction quality can be
analyzed by performing the classification task and reporting the accuracy on reconstructed
images. Which is a more informed way of result analysis, but it can turn out to be difficult
to device this type of metrics in many cases, and also can make comparisons with other
existing work difficult, although useful for an application.

Theoretical Recovery Guarantees

Intuitively, we can’t use any dimension of latent space or any deep network for recon-
struction. Theoretical recovery guarantees can set the bounds for which recovery can be
guaranteed. They generally involve proving the upper bound on probability of reconstruc-
tion and minimum number of required measurements dependent on the dimension of latent
space given as the input to generative adversarial network.
The proof of those is usually determined using Lipchitz assumption of Deep Neural Net-
work parametric function, Johnson Linderstrauss Lemma, Restricted Isometry property and
structure of measurement matrix. Laying such theoretical bounds will make a CS-MRI re-
construction method more principled, which are not analyzed in this project
Other consideration that needs to be addressed are robustness of the learning algorithm,
complexity of implementation and feasibility of deployment of GANs. they are a recent
innovation and designing its hyper-parameters is more of a art than a science (it is based
on lot of experience and empirical analysis by experts in this domain), and evaluating the
GAN performance is still an open problem.
Although the reconstruction results of the project are not perfect enough to be used in real
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time, one can see the enormous capabilities of using this method for CS-MRI reconstruc-
tion for improved speeds of reconstruction without any requirement for hand crafted basis
and supervised data.

6.3 Future Work

Some of the future work, that is expected to improve the quality of reconstructions is dis-
cussed here. First regarding the info-GAN design, by looking at some networks used on or
for MRI images, if we can have residual connections or skip connections across the corre-
sponding layers of generator and discriminator, the quality of generated images might be
improved, at the same time one must keep in mind during the implementation is that the
generator network should be comfortably detached and used in ADMM at later stages.
Second, as discussed in latent space design section, using a principled approach such as
the distribution of first n principal components, and if possible to have a kind of data set
that has one to one slice correspondence across the subject so that we can have codes that
has both discrete and continuous components, which can have improved effect at denoising
step of ADMM.
Finally, along with above improvements if one can derive the theoretical guarantees and
test with a range of under-sampling masks it would make the work more wholesome and
principled.

0The codes for this project and simulation can be found at: https://github.com/DeepakRaya/
CS_MRI_infoGAN_ADMM
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Appendix A

Principles of MRI and MRI acquisition

Magnetic Resonance imaging is a modality based on the phenomenon of nuclear magnetic
resonance (NMR), primarily used for medical imaging, it is non invasive and possess good
tissue contrast to look inside the human body.
The key basis of MRI is the NMR signal associated with the hydrogen atoms present as
water and fat in the Human body. The NMR signal is produced by the nucleus of hydrogen
atom due to the spin property.
Spin can be though of as a small magnetic moment vector, which can align itself to external
magnetic field (B) and absorbs photons of frequency, ν = γB, this frequency is termed as
Larmour frequency. Two states of particles will be present when set of spins are placed in
an external magnetic field one with lower energy spin and other with higher energy spin, at
equilibrium, according to Boltzmann statistics lower energy spin state slightly outnumber
the higher energy spins. when the group of spins are probed with a photon of Larmour
frequency the lower energy spin will transition to higher energy spin, it is found that in
NMR the Larmour frequency in Radio-Frequency Range.

A.1 Net Magnetization and T1,T2 Processes

The collection spins when placed in a magnetic field the net magnetic moment causes net
magnetization vector to point out in the same direction of external magnetic field, if B0 in
positive z direction, the net Magnetization Mnet = M0 ẑ, at equilibrium.
When sufficient amount of energy is incident on to the group of spins, the photons can
change the net magnetization vector and it can even saturate the magnetization vector to
zero.
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A.1.1 T1 Process

The time constant that accounts for the saturation of longitudinal magnetization (Mnet) to
its equilibrium value is termed as spin-lattice relaxation time (T1).

Mz = M0(1− et/T1) (A.1)

A.1.2 Precession and T2 Process

If net magnetization vector is forced down to X − Y plane, it rotates about z axis with a
precession rate equal to Larmour frequency, the net magnetization starts to dephase due to
slight differences in magnetic field experienced among different spin sets.
The time constant that accounts for the transfer of transverse magnetization Mxy to its
equilibrium value is called spin-spin relaxation constant T2

Mxy = Mxy0 e
t/T2 (A.2)

Both process T1 and T2 occur simultaneously, with T1 ≥ T2.

A.1.3 Time Domain NMR signal

If a coil is placed around X axis the transverse magnetization induces current in the coil,
this current as a function of time is sinusoidal with decaying amplitude with time constant
T2 this signal is called Free induced decay (FID) signal, which is the NMR signal.

90-FID sequence

The sequence of RF-pulses applied in order produce particular NMR signal from a sample
is called as pulse sequence. When 90 FID pulse sequence is activated the net magnetization
vectors rotates on to X − Y plane, and precess about Z axis, with decaying magnitude.

Spin-Echo Sequence

Here similar to FID pulse sequence a 90◦ pulse is applied first, which rotates the mag-
netization vector in X − Y plane, which starts to dephase, then at some point in time a
180◦ pulse is applied, which trys to rephase the magnetization vector and produces a signal
called echo.
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Inversion Recovery Sequence

This is another pulse sequence for recording an NMR spectrum, first a 180◦ pulse is acti-
vated which forces the net magnetization vector in negative z direction, which then under-
goes spin-relaxation towards positive z direction, but before reaching the equilibrium a 90◦

pulse is applied which rotates the magnetization vector onto X − Y plane, which results in
FID signal.

A.2 From NMR signals to Image

Previous section described about the principles of MRI and signal formation, this section
deals with the formation of MRI image from NMR signal measurements (MRI acquisition).

A.2.1 The Three main systems of MRI

The three main systems of MRI are:

• Static Magnetic field

• Gradient Magnetic field

• The RF system

The static magnetic field gives rise to the resonance frequency of the spin called Larmour
frequency and net Magnetization vector.

ν0 = γB0 (A.3)

The gradient system introduces a form of regional encoding, so that one can uniquely
associate a NMR measurement to a particular volume element. The Gradient magnetic
field is a contrast in the magnitude of magnetic field with respect to the position, most
common variation used for MR imaging is Linear Gradient, i.e.

Bx = B0 + Gx x (A.4)

Where a gradient along a particular direction is denoted with Gx, Gy, and Gz, one can
now uniquely identify the a spatial encoding relation ship, since the resonance frequency
varies with position.
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ν = ν0 + γ Gx x; where ν0 = γB0 (A.5)

x =
(ν − ν0)

γ Gx

(A.6)

equations A.5 and A.6 represent the spatial encoding and frequency encoding due to gradi-
ent magnetic field applied in the X direction.
The RF system consists of transceiver coils which can transmit a RF pulse for slice selec-
tion and receive the FID or Echo signal from the exited spin system.

Figure A.1: Linear gradient of magnetic field

(a) slice selection(wide slice) (b) slice selction(narrow slice)

Figure A.2
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A.2.2 Fourier Transform Tomography

One of the early forms of MR imaging is to use back projection reconstruction of the
selected slice, using the spatial and frequency encoding with the gradient magnetic fields.
But with another gradient called phase encoding gradient one can reconstruct the MR image
more effectively and efficiently.

Figure A.3: Frequency Encoding: (a) and (b) represent the frequency encoding when the
sample is placed in different orientations, (back projection reconstruction is performed by
stage wise complete rotation)

Phase encoding gradient

It is the gradient in B0 which imparts certain phase angle to transverse magnetization vector.
Initially all the magnetization vectors rotate at Larmour frequency, but when a gradient is
applied along a transverse direction, each spin will precess at different frequency governed
by the gradient field, after some time when the gradient is switched off the magnetization
vectors rotate at same frequency but with non-identical phase angles, the amount of phase
shift is dependent on the magnitude of the gradient and time for which it is applied. This
step gives a unique phase angle for each spin in the system.

Figure A.4: Phase encoding: 7 repetitions of phase gradient activations with distinct gra-
dient magnitudes are shown here
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FT Tomographic Imaging

This explains the simplest form Fourier Transform imaging sequence for converting the
received signal from the spin system to image. The timimg diagram for the FT imaging is
shown in A.5.
The first event is to activate the slice selection gradient and simultaneously slice selection
RF pulse is applied. The slice selective RF pulse is an modified sinc function shaped burst
of RF energy. Once the RF pulse is complete the slice selection gradient is put off and the
phase encoding gradient is activated. Once the phase encoding gradient has been turned off
a frequency encoding gradient is turned on and the FID signal is recorded.
This sequence is reiterated 128 or 256 times, depending on image size and resolution, to
accumulate enough data required to produce an image. After each repetition time (TR) the
magnitude of the phase encoding gradient is changed in regular steps between the max-
imum amplitude and the minimum amplitude of the gradient, so that it can have enough
unique data to construct the image.

Figure A.5: The timing diagram for Fourier transform imaging sequence

The direction of applied field gradients is indicated in the following table A.1.
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Table A.1: Direction of Gradient Fields

Slice Gφ Gs Gf

XZ Y X or Z Z or X

XY Z X or Y Y or X

YZ X Y or Z Z or Y

Consider a cube of spins as a the system to be imaged, this cube is consists of several
volume elements each with its own net magnetization [18]. Suppose we want to image in
X−Y plane, the static magnetic field B0 is along Z direction and a slice selection gradient
is applied along Z direction, simultaneously a RF pulse is applied which rotates only the
spins that satisfy resonance condition. The slice plane selected is given by

Z =
∆ν

γ Gs

(A.7)

Figure A.6: Slice Selection

For simplicity let the slice selected be 3 × 3 element space, all the net magnetization
vectors rotate at same Larmour frequency, Once a Phase Gradient along X direction is
turned on, each element rotates at different frequency along the gradient direction and then
if it is turned off, each slice element along X direction rotates with same frequency but with
different phases.
Once the phase encoding gradient is turned off the frequency encoding gradient is switched
on along Y direction, now different elements precess with different frequency depending
on their y location. Finally this timing sequence imparts unique phase and frequency to
each and every volume element of the slice. This implies that if we can determine the
phase and frequency of the signal from the net magnetization vector we could position the
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volume element in the slice.
If there were only one volume element in a slice we can perform this task by observing the
spectrum of received FID signal. But if there are many elements we need multiple phase
encoding gradients, i.e one for each location along the phase encoding gradient. If there
are 256 phase encoding direction locations we need 256 discrete phase gradient amplitudes
and 256 distinct FIDs will be recorded.

Image Resolution

The resolvability or distinguishability of two features in an image is called image resolu-
tion. Resolution quantifies the quality of an image. In MRI the resolution is dependent on
T2, slice thickness, image size, SNR and sampling frequency.

Field of view is set by sampling interval ∆k, by the relation FOV =
1

∆k
, voxel(volume

element) size is set by maximum spectral frequency kmax, given by ∆x =
1

2kmax
.

If two features are separated by a distance within
FOV

N
, where N number of data point

across a dimension of MR image, they can not be resolved. Therefore pixel size and the
parameters that it depend on must be chosen accordingly.

Image Contrast selection

To differentiate between tissues, we need to modulate the contrast based on some coupled
properties of recorded signal and tissue. The magnitude of contrast (S) is dependent on
type of pulse sequences being used.
The following are the contrast equations for different pulse sequences.

• S = kρ(1− e(−TR/T1))e(−TE/T2) (: for Spin Echo)

• S = kρ(1− 2e(−TI/T1) + e(−TR/T1)) (: for 180-90 inversion recovery)

• S = kρ(1− 2e(−TI/T1) + e(−TR/T1))e(−TE/T2) (: for 180-90-180 inversion recovery)
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Appendix B

Compressive Sensing

Compressive sensing is a framework for reconstruction of signal from far fewer samples
compared to the traditional requirement of Shannon-Nyquist sampling, which requires
dense samples and doesn’t exploit the structure and sparsity, that is inherent to many natu-
ral signals.
The idea of compressed sensing comes down to the fact that there are only few degrees of
freedom left after compressing; therefore, it is possible to take comparably less number of
measurements than the complete dimension of the signal and reconstruct it approximately,
if the signal is sparse in its pixel domain or in a transformed domain.

B.1 Compressed Sensing reconstruction formulation

The compressed sensing signal recovery can be formulated as a regularized optimization
problem, as shown below:

x∗ = argmin
x

F (x) + λJ(x) (B.1)

F (x) is a fidelity term with respect to measurements and J(x) is a property term that a sig-
nal must satisfy, i.e. its minimization results in a output that belongs to the signal subspace.
The scalar λ controls fidelity and property trade-off.
Usually the fidelity term is a norm error between true measurements(y) and predicted
measurement(Ax), and the property term in traditional compressed sensing paradigms is a
l0 norm or a relaxed form of it, the l1 norm [19] of the signal.

x∗ = argmin
x
||y −Ax||2 + λ||x||1 (B.2)
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The solution for B.2 gives a sparsest vector x that has high fidelity with the observed
measurements

B.1.1 Requirements for a successful Compressed Sensing

Compressed sensing relies on two main principles, one sparsity which depends on the
signal of interest and two incoherence which depends on the sensing paradigm [20]. Signals
have a concise representation when expressed in proper basis Ψ which is generally termed
as sparsity. Incoherence between the representation basis and sensing basis imply that the
sensing waveforms or basis must have dense representation in transform basis Ψ.
Let f ∈ Rn be the signal of interest and is sensed using m sensing waveforms φk k ∈
1, . . . ,m i.e

yk = 〈f, φk〉 k = 1, . . . ,m (B.3)

In B.3 yk’s represent the measurements and m� n, the number of linear measurements of
signal are far less than true signal dimension. let Am×n be a sensing matrix with rows as
φ1, phi2, . . . , φm, the complete sensing equation can be expressed as,

y = Af (B.4)

which is a ill-posed problem, since m� n

Sparsity

A successful CS relies on assumption of sparsity of signal in its acquired domain or trans-
formed domain, so that the search space to the ill posed problem B.4 can be properly
restricted to sparse solutions.
Let the signal of interest f be sparse in ψ basis,

f =
n∑
i=1

xiψi (B.5)

where xi’s are the coefficients in transformed basis, given by

xi = 〈f , ψi〉
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The signal f , can be expressed as
f = Ψx (B.6)

when the signal is sparse, small coeffiencts can be discarded, without much loss in the
information content, if a signal is S-sparse, we can write B.6 as

fs = Ψxs (B.7)

yk = Axs, A = Φ Ψ (B.8)

where xs, represents all, except S dominant values of x, as zero. Now one can solve for
the xs using the optimization program B.2.

Figure B.1: Compressively sensed signal with transform sparsity S = 4 (adopted from [2])

Incoherence

Coherence between the pair of bases (Φ,Ψ), where Ψ is the transform basis, and Φ is the
sensing basis is defined as maximum correlation between any two elements of Φ and Ψ[20].

µ(Φ,Ψ) =
√
n max

1≤k,j≤n
|〈φk, ψj〉| (B.9)

for successful reconstruction we need pairs with lower coherence, i.e. incoherent pairs.
Random sensing matrices are found to be largely incoherent with any transformation basis
Ψ, most commonly used sensing matrices for compressed sensing are the matrices with
Gaussian iid entries or random binary (±1)

50



Lower bound on Measurements

It is shown that number of measurements required for successful compressed sensing de-
pends on incoherence between the sensing and transformation basis, sparsity of the under-
lying signal, and the true dimension of the signal. The lower bound on number of required
measurements is given by,

m ≥ C.µ(Φ,Ψ)2.S. log(n) (B.10)

C is a constant, µ is the coherence, S is the sparsity of the signal and n is the total true
dimension of the signal of interest.
Minimum number of measurements required for successful reconstruction increases log-
arithmically with the true dimension of the signal. Higher incoherence(lower coherence)
and higher sparsity decreses the the lower bound on required measurement vector dimen-
sion.
It is also shown that one can infer the signal, with probability greater than 1 − δ, if the
number of measuremts m ≥ C.µ(Φ,Ψ)2.S. log(

n

δ
).

Restricted Isometry Property

One of the "key property" to study the robustness of Compressed sensing is "Restricted
Isometry property"(RIP).
Isometry constant (δs) of a matrix A is the smallest number such that,

(1− δs)||x||2 ≤ ||Ax||2 ≤ (1 + δs)||x||2 (B.11)

holds for all S-sparse vectors x, the matrix A is said to obey the RIP of order s if δs is not
very close to one [20]. RIP implicitly ensures that the S-sparse vectors can not be in Null
space of A.

B.2 Algorithms for Compressed Sensing Reconstruction

There are various classical algorithms for CS reconstruction, that use traditional formu-
lation of sparsity prior on the signal, such as Orthogonal matching pursuit, basis pursuit,
LASSO regression, iterative Thresholding and Approximate message passing.
On the other hand if the data of signals or images of interest are available one can use
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various machine learning algorithms to learn the property term and then use a iterative op-
timization to reconstruct the signal, this can replace the assumption of sparsity and remove
the need for designing a sparse basis for the signal under consideration. Another way is to
learn a parametric function, usually a Deep Neural Network, which directly maps the in-
put measurements to the reconstructed signal, this requires a supervised learning paradigm
where the data is set of both signal data and corresponding measurements. Recent devel-
opments and enormous capability of the unsupervised learning paradigms and generative
models such as GAN and VAE paves another effective way for learning the signal property
term J()̇, makes an attractive choice compared to traditional and supervised learning meth-
ods.
The classical l1 minimization (Basis Pursuit) is already discussed in the introductory ses-
sion of this chapter. This section deals with other main algorithms for CS Reconstruction,
that are computationally fast and efficient, further some deep neural network based algo-
rithms are also presented.

B.2.1 Matching Pursuit

"Matching Pursuit is an iterative algorithm", which decomposes the signal into a linear
combination of functions that form a set called dictionary. At each iteration dictionary ele-
ments are chosen in a greedy-optimal way, so that the Linear expansion best approximates
the signal of interest.
Let D = {gγ} be a family of vectors with norm one, this set is called a dictionary, and f be
the signal of interest. In Matching Pursuit f is decomposed as B.12, for any g ∈ D

f = 〈f, g〉 g + r(g) (B.12)

where r(g) is the residual left after aproximation off by g. For greedy option we want to
choose the best approximation, since the residual is orthogonal to f and according to B.13,
we want to minimize the l2-magnitude of residual, implicitly we want maximal |〈f, g〉|2.

||f ||2 = |〈f, g〉|2 + ||r(g)||2 (B.13)

Or it is also sufficient to choose the dictionary element that is almost optimal, i.e B.14 for
any α ∈ ( 0, 1] .

|〈f, g〉|2 ≥ α sup
γ∈Γ
|〈f, gγ〉| (B.14)
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At each iteration matching pursuit will select the best approximation for the present residual
from the dictionary, and progressivly the residual term converges to zero.

Orthogonal Matching Pursuit

Orthogonal matching pursuit fits the original signal onto selected dictionary elements, in
prior via Least squares, rather than taking the simple scalar products of residual with new
disctionary elements for coefficients.

Algorithm B.1: Orthogonal Matching Pursuit
input:
Φ:Measurement Matrix
y:Measurements Vector
k:Assumed sparsity of the signal x

output:
x̂: Reconstruction
Λk: set of non zeros position indices
ak: measurements approximation
r = y − ak: The residual

1 r0 ← y

2 Λ← ∅
3 for i = 1, 2, . . . , n do
4 λ(i) ← argmaxj=1,...,n|〈r(i−1), φj〉|
5 Λ(i) ← Λ(i−1) ∪ λ(i)

6 Φ(i) ← Φ(i−1)φλ(i)

7 x(i) ← argminx̂

8 a(i) ← φ(i)x(i)

9 r(i) ← y − a(i)

10 end
11 x̂← x(k)

return:
x̂,Λk, a(k), r(k)

CoSaMP

This is an extension to orthogonal matching pursuit algorithm, and is shown to have tight
bounds with respect to its convergence.
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CoSaMP contains five main steps:

• Identification: Finds the significant 2s components in the proxy signal z.

• Support Merge: merges support of proxy with support of the previous iterate of
solution.

• Estimation: estimates the solution via constrained least squares on particular support

• Pruning: takes the estimate of the solution and compresses it to the required support

• Sample Update: updates the residual in Φ-space

Algorithm B.2: Compressive sampling matching pursuit
input:
Φ: Measurement Matrix
y: Measurements Vector
s:sparsity of the signal x

output:
x̂: Reconstruction

1 x0 ← 0

2 v← y

3 k ← 0

4 while stopping condition not met do
5 k ← k + 1 z← ΦTv

6 Ω← supp(z2s)

7 Γ← Ω ∪ supp(x(k−1))

8 x̄← argminx̄:supp(x̄)=Γ‖Φx̄− y‖2

9 x(k) ← x̄

10 v← y − Φx(k)

11 end
12 x̂← x(k)

return:
x̂
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B.2.2 Iterative Thresholding

This class of algorithms, at each iteration step they perform some kind of thresholding
operation T , B.15, with parametrs α and g is a function that acts on previous step output.

x(i) = Tα(g(x(i−1))) (B.15)

Iterative Hard Thresholding

Hard thresholding uses a function Hs, which sets all except s significant components to
zero.

Hs =

 xi |xi| ≥ |ζ|

0 otherwise
(B.16)

Algorithm B.3: Iterative Hard Thresholding
input:
Φ: Measurement Matrix
y: Measurements Vector
s: sparsity of the signal x

output:
x̂: Reconstruction

1 x0 ← 0

2 for i, . . . do
3 x(i) ← Hs(x

(i−1) + ΦT (y − Φx(i−1)))

4 end
5 x̂← x(k)

return:
x̂

Iterative Soft Thresholding

Soft Thresholding function performs B.17 component wise

Sα =


x− α x > α

0 |x| ≤ α

x+ α x < −α

(B.17)
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Soft thresholding is used to minimize LASSO or basis pursuit kind of objectives

Fα(x) = ‖Φx− y‖2
2 + 2α‖x‖1 (B.18)

and the solution to B.18 is given as

Ltk→∞x
(k+1) = Sα(x(k) + ΦTy − ΦTΦx(k)) (B.19)

Algorithm B.4: Iterative Soft Thresholding
input:
Φ: a Matrix with Eigen values < 1
y: Measurements Vector
a Radius R
output:
A vector xR ∈ Rn that is the minimiser in BR of D(x) = ‖Φx− y‖2

1 x0 ← 0

2 for i, . . . do
3 Select β(k)

4 x(k) ← PR[x(k−1) + β(k)ΦT (y − Φx(k−1))]

5 end
6 xR ← x(k)

BR is the l1 ball in Rn with l1 radius R, and PR is the projection of point x to a point
closest, in l2 sense onto the convex set BR.

B.2.3 Approximate Message Passing

This method[21] is a modification on iterative thresholding algorithms, with a impor-
tant term derived based on "belief propagation theory" and found to improve "sparsity-
undersampling trade-off". measurements taken according to y = Φx, we initially start
with x(0) ← 0 and the approximate message passing algorithms look like

z(k) = y − Φx(k) +
1

δ
z(k−1)〈ηk−1(Φ∗z(k−1) + x(k−1))〉 (B.20)

x(k+1) = ηk(Φ
∗z(k) + x(k)) (B.21)

The special crucial term
1

δ
z(k−1)〈ηk−1(Φ∗z(k−1) + x(k−1))〉 is what makes this algorithm

more attractive over general thresholding algorithm.
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