ESPRIT algorithm and DOA estimation

Deepak Raya.V

Digital Signal Processing IIST

Statistical Signal Processing Lecture, 2020

ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcome

Overview Frequency Estimation techniques

Harmonic model

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries

Least squares ESPRIT

Total least squares ESPRIT

ESPRIT for DOA estimation

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

Outline

Introduction

Outcomes Overview Frequency Estimation techniques Harmonic model Autocorrelation matrix of harmonic model Signal subspace and noise subspace Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries Least squares ESPRIT Total least squares ESPRIT

ESPRIT for DOA estimation

DOA and Array processing DOA estimation

ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcome

Overview Frequency Estimation techniques

Harmonic model

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries

Least squares ESPRIT

Total least squares ESPRIT

ESPRIT for DOA estimation

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

・ロト ・ 四ト ・ ヨト ・ ヨト ・ りゃく

Outcomes

- Learn Harmonic modeling of signals
- Get an overview of Frequency estimation techniques using Harmonic Model
- Know about theoretical and practical correlation matrices
- Understand the details, working and flow of ESPRIT algorithm
- Understand it's application to DOA estimation in array processing

ESPRIT algorithm and DOA estimation

Deepak Raya.V

Introduction

Outcomes

Overview Frequency Estimation techniques

Harmonic model

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries

Least squares ESPRIT

ESPRIT for DOA

DOA and Array processing

OOA estimation

analogy between general ESPRIT and for DOA

Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Overview Frequency Estimation techniques

The problem:

Given a snapshot of samples $\{x(1), ..., x(N)\}$, how to estimate the frequencies present in the data(signal). ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcome

Overview Frequency Estimation techniques

Harmonic mode

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries

Least squares ESPRIT

ESPRIT for DOA estimation

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

- In many applications signals of interest are complex exponentials contained in noise.
- e.g. formant frequencies in speech processing, moving targets in radar, spatially propagating signals in array processing.

ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcome

Overview Frequency Estimation techniques

Harmonic model

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries

Least squares ESPRIT

ESPRIT for DOA

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

Harmonic model

Signal containing P complex exponentials in noise:

$$x(n) = \sum_{p=1}^{P} (\alpha_p e^{j2\pi n f_p}) + w(n)$$

Discrete time frequency of pth component is

$$f_p = \frac{\omega_p}{2\pi} = \frac{F_p}{F_s}$$

phase component of each complex exponential is contained in the amplitude, i.e.

$$\alpha_{p} = |\alpha_{p}| e^{j\psi_{p}}$$

The power spectrum of complex exponentials is commonly referred to as line spectrum ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcomes

Overview Frequency Estimation techniques

Harmonic model

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries

Least squares ESPRIT

Total least squares ESPRIT

ESPRIT for DOA estimation

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

Autocorrelation matrix of harmonic model

 Consider a M length snapshot of the signal i.e

$$\mathbf{x}(n) = [x(n) \ x(n+1) \ x(n+2) \ \dots \ x(n+M-1)]^T$$

vector representation of above snapshot

$$\mathbf{x}(n) = \sum_{p=1}^{P} \alpha_p \mathbf{v}(f_p) e^{j2\pi n f_p} + \mathbf{w}(n) = \mathbf{s}(n) + \mathbf{w}(n)$$

where; $\mathbf{v}(f) = [1 \ e^{2\pi f} \ ... \ e^{2\pi (M-1)f}]^T$

ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcomes

Overview Frequency Estimation techniques

Harmonic mode

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries

Least squares ESPRIT

Total least squares ESPRIT

ESPRIT for DOA estimation

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

Autocorrelation matrix of harmonic model

The autocorrelation matrix of this model

$$\mathbf{R}_{x} = E\{x(n)x^{H}(n)\} = \mathbf{R}_{s} + \mathbf{R}_{w}$$

$$\mathbf{R}_{x} = \sum_{p=1}^{P} |\alpha_{p}|^{2} \mathbf{v}(f_{p}) \mathbf{v}^{H}(f_{p}) + \sigma_{w}^{2} \mathbf{I} = \mathbf{V} \mathbf{A} \mathbf{V}^{H} + \sigma_{w}^{2} \mathbf{I}$$

where

$$\mathbf{V} = [\mathbf{v}(f_1) \ \mathbf{v}(f_2) \ \dots \ \mathbf{v}(f_P)]$$

$$\mathbf{A} = \begin{bmatrix} |\alpha_1|^2 & 0 & \dots & 0 \\ 0 & |\alpha_2|^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & |\alpha_P|^2 \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcomes

Overview Frequency Estimation techniques

Harmonic mode

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries

Least squares ESPRIT

Total least squares ESPRIT

ESPRIT for DOA estimation

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

Signal subspace and noise subspace

▶
$$\mathbf{R}_x = E\{\mathbf{x}(n)\mathbf{x}^H(n)\} = \mathbf{R}_s + \mathbf{R}_w$$

 \mathbf{R}_s is rank-defficient for,
 $P(\# \text{ complex exponentials}) \le M(\text{time window length}).$

 The autocorrelation matrix can also be written in terms of eigen decomposition

$$\mathbf{R}_{x} = \sum_{m=1}^{M} \lambda_{m} \mathbf{q}_{m} \mathbf{q}_{m}^{H} = \mathbf{Q} \wedge \mathbf{Q}^{H}$$

 λ_m are eigen values in descending order \mathbf{q}_m are corresponding eigen vectors

$$\lambda_m = M |\alpha_m|^2 + \sigma_w^2 \text{ ; for } m \leq P \lambda_m = \sigma_w^2 \text{ ; for } m > P$$

$$\blacktriangleright \Rightarrow \mathbf{R}_{x} = \mathbf{Q}_{s} \Lambda_{s} \mathbf{Q}_{s}^{H} + \sigma_{w}^{2} \mathbf{Q}_{w} \mathbf{Q}_{w}^{H}$$

ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcomes

Overview Frequency Estimation techniques

Harmonic model

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries

Least squares ESPRIT

Total least squares ESPRIT

ESPRIT for DOA estimation

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Signal subspace and noise subspace

$$\blacktriangleright \Rightarrow \mathbf{R}_{x} = \mathbf{Q}_{s} \Lambda_{s} \mathbf{Q}_{s}^{H} + \sigma_{w}^{2} \mathbf{Q}_{w} \mathbf{Q}_{w}^{H}$$

- Subspace spanned by Q₅ columns ← Signal Subspace Subspace spanned by Qw columns ← Noise Subspace
- The above two sub spaces are orthogonal to each other, since the correlation matrix is hermitian symmetric
- Time window frequency vectors v(f_p)'s must lie completely in the signal subspace
- Basis for subspace based frequency estimation methods

ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcomes

Overview Frequency Estimation techniques

Harmonic model

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries Least squares ESPRIT Total least squares ESPRIT

ESPRIT for DOA

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Theoretical and Practical correlation matrix

Theoretical Correlation matrix:

$$\mathbf{R}_{x} = E\{\mathbf{x}(n)\mathbf{x}^{H}(n)\}$$

Practical Correlation matrix:

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}^{T}(0) \\ \mathbf{x}^{T}(1) \\ \vdots \\ \mathbf{x}^{T}(N-1) \end{bmatrix} = \begin{bmatrix} x(0) & x(1) & \dots & x(M-1) \\ x(1) & x(2) & \dots & x(M) \\ \vdots & \vdots & \vdots & \vdots \\ x(N-1) & x(N) & \dots & x(N+M-2) \end{bmatrix} \xrightarrow{\text{Periodication}}_{\text{rest squares ESPRIT}} \xrightarrow{\text{Periodication}}_{\text{rest squares ESPRIT}}$$

$$\mathbf{x} = \mathbf{x}^{H} \mathbf{x}$$
$$\mathbf{x} = \frac{\mathbf{x}^{H} \mathbf{x}}{N}$$

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

ESPRIT algorithm

and DOA estimation Deepak Raya.V

Theoretical and Practical correlation matrix

ESPRIT Algorithm: (Estimation of signal parameters via rotational invariance techniques)

- Differs from other subspace methods, in the sense that subspace is estimated from data matrix(X), rather than correlation matrix(R_x).
- The essence of ESPRIT lies in the rotational property between staggered sub spaces.

ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcomes

Overview Frequency Estimation techniques

Harmonic model

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries

Least squares ESPRIT Total least squares ESPRIT

SPRIT for DOA

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

・ロト・日本・山田・山田・

Harmonic model:

$$\mathbf{x}(n) = \sum_{p=1}^{P} \alpha_p \mathbf{v}(f_p) e^{j2\pi n f_p} + \mathbf{w}(n) = \mathbf{V} \Phi^n \alpha + \mathbf{w}(n) = \mathbf{s}(n) + \mathbf{w}_{n}^{\text{targent}} \mathbf{w}_{n}^{\text{targent}} \mathbf{w}_{n}^{\text{targent}}$$

where,
$$\Phi = diag\{\Phi_1, \Phi_2, ..., \Phi_P\} = \begin{cases} e^{j2\pi f_1} & 0 & \dots & 0 \\ 0 & e^{j2\pi f_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & e^{j2\pi f_P} \end{cases}$$

frequencies of the complex exponentially describe this rotation matrix, the frequency estimates can be obtained by finding Φ

ESPRIT algorithm and DOA estimation

Deepak Raya.V

Preliminaries

 Consider two overlapping subwindows of length M - 1 within the length M time window vector

$$\mathbf{s}(n) = egin{bmatrix} \mathbf{s}_{M-1}(n) \ s(n+M-1) \end{bmatrix} = egin{bmatrix} s(n) \ \mathbf{s}_{M-1}(n+1) \end{bmatrix}$$

where; $\mathbf{s}_{M-1}(n) = M - 1$ length subwindow of $\mathbf{s}(n) = \mathbf{V}_{M-1} \Phi^n \alpha$

Figure: Time-staggered, overlapping windows used by the ESPRIT algorithm

ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcomes

Overview Frequency Estimation techniques

Harmonic model

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries

Least squares ESPRIT Total least squares ESPRIT

ESPRIT for DOA

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Consider the above staggered windows, i.e.

$$\mathbf{s}(n) = \begin{bmatrix} \mathbf{s}_{M-1}(n) \\ \mathbf{s}(n+M-1) \end{bmatrix} = \begin{bmatrix} \mathbf{s}(n) \\ \mathbf{s}_{M-1}(n+1) \end{bmatrix}$$

where; $\mathbf{s}_{M-1}(n) = M - 1$ length subwindow of $\mathbf{s}(n) = \mathbf{V}_{M-1} \Phi^n \alpha$

We define the matrices:

$$\mathbf{V}_1 = \mathbf{V}_{M-1} \Phi^n$$

and

$$\mathbf{V}_2 = \mathbf{V}_{M-1} \Phi^{n+1}$$

where V₁ and V₂ correspond to staggered windows
 From the above matrices, we can see that

$V_2 = V_1 \Phi$

Each of this two matrices spans a different, though related, M - 1-dim subspace

ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcomes

Overview Frequency Estimation techniques

Harmonic model

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries

Least squares ESPRIT Total least squares ESPRIT

ESPRIT for DOA estimation

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

Now, suppose that we have a data matrix X , with N snapshots of length M time window.
 ⇒ Using singular value decomposition:

 $\mathbf{X} = \mathbf{L} \boldsymbol{\Sigma} \mathbf{U}^{H}$

where,

L is an $N \times N$ matrix of left singular vectors **U** is $M \times M$ matrix of right singular vectors Σ is $N \times M$ singular values along the diagonal

ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcomes

Overview Frequency Estimation techniques

Harmonic model

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries

Least squares ESPRIT

Total least squares ESPRIT

ESPRIT for DOA estimation

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Using singular value decomposition:

 $\mathbf{X} = \mathbf{L} \boldsymbol{\Sigma} \mathbf{U}^{H}$

- The squared magnitudes of singular values are equal to the eigen values of correlation matrix(R_x) scaled by a factor N, and colummns of U are corresponding eigen vectors.
- Thus, U forms an orthonormal basis for underlying M dimensional space
- This sub space can be partitioned into signal and noise subspace

$$\mathbf{U} = [\mathbf{U}_s | \mathbf{U}_n]$$

ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcomes

Overview Frequency Estimation techniques

Harmonic model

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries

Least squares ESPRIT

ESPRIT for DOA

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

・ロト ・ 四ト ・ ヨト ・ ヨト ・ りゃく

This sub space can be partitioned into signal and noise subspace

 $\mathbf{U} = [\mathbf{U}_s | \mathbf{U}_n]$

- U_s is matrix of right handed singular vectors corresponding to singular values of P largest magnitudes.
- ► The matrices V and U_s span the same subspace, ⇒ There exists a invertible transformation T, that maps U_s to V i.e.

$$V = U_s T$$

Similar staggering matrices of V can be defined for U_s, say, U₁ and U₂

ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcomes

Overview Frequency Estimation techniques

Harmonic model

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries

Least squares ESPRIT

Total least squares ESPRIT

ESPRIT for DOA estimation

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

staggered matrices of U_s: U₁ and U₂ staggered matrices of V: V₁ and V₂ holds the relation,

$$\mathbf{V}_1 = \mathbf{U}_1 \mathbf{T}$$
 and $\mathbf{V}_2 = \mathbf{U}_2 \mathbf{T}$

Similar to V₁ and V₂, U₁ and U₂ are related by a rotation matrix Ψ

 $\bm{U}_2=\bm{U}_1\bm{\Psi}$

Now, we solve for Ψ using least squares,

 $\Psi = (\mathbf{U}_1^H \mathbf{U}_1)^{-1} \mathbf{U}_1^H \mathbf{U}_2$

ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcome

Overview Frequency Estimation techniques

Harmonic model

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries

Least squares ESPRIT

Total least squares ESPRIT

ESPRIT for DOA estimation

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

From above two equations, we can write

$$\begin{split} \Psi \mathbf{T} &= \mathbf{T} \Phi \\ \Rightarrow \Psi &= \mathbf{T} \Phi \mathbf{T}^{-1} \end{split}$$

this equation can be recognized as relationship between eigen vectors and values of $\boldsymbol{\Psi}$

- therefore, the diagonal elements of Φ are simply the eigen values of Ψ
- as a result the estimates of frequency are

$$\hat{f}_p = \frac{\phi_p}{2\pi}$$

ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcomes

Overview Frequency Estimation techniques

Harmonic model

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries

Least squares ESPRIT

ESPRIT for DOA estimation

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Total least squares ESPRIT

form a matrix made up of staggered signal subspace matrices U₁ and U₂, placed side by side, and perform SVD i.e.

$$[\mathbf{U}_1 \ \mathbf{U}_2] = \widetilde{\mathbf{L}} \widetilde{\boldsymbol{\Sigma}} \widetilde{\mathbf{U}}^H$$

we then operate on $2P \times 2P$ matrix **U**

$$\widetilde{\mathsf{U}} = egin{bmatrix} \widetilde{\mathsf{U}}_{11} & \widetilde{\mathsf{U}}_{12} \\ \widetilde{\mathsf{U}}_{21} & \widetilde{\mathsf{U}}_{22} \end{bmatrix}$$

The TLS solution for the subspace rotation matrix Ψ is

$$\Psi_{\textit{tls}} = -\widetilde{\mathbf{U}}_{12}\widetilde{\mathbf{U}}_{22}^{-1}$$

ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcomes

Overview Frequency Estimation techniques

Harmonic mode

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries

Least squares ESPRIT

Total least squares ESPRIT

ESPRIT for DOA estimation

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

Complete flow of ESPRIT algorithm

Figure: Flow of ESPRIT algorithm

ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcomes

Overview Frequency Estimation techniques

Harmonic model

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries

Least squares ESPRIT

Total least squares ESPRIT

ESPRIT for DOA estimation

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

DOA and Array processing

Estimate source location using sensor arrays

The delay in the signal received by mth element of ULA, compared to first element, from a pth source is

$$\Delta_{p,m} = \frac{(m-1)\,d\,\sin(\phi_p)}{c}$$

ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcome

Overview Frequency Estimation techniques

Harmonic model

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries

Least squares ESPRIT

Total least squares ESPRIT

ESPRIT for DOA estimation

DOA and Array processing

OOA estimation

analogy between general ESPRIT and for DOA

Summary

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

DOA estimation

The delay in the signal received by mth element of ULA, compared to first element, from a pth source is

$$\Delta_{p,m} = \frac{(m-1)\,d\,\sin(\phi_p)}{c}$$

The signal received by the whole ULA of length M, from a pth source is

ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcomes

Overview Frequency Estimation techniques

Harmonic model

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries

Least squares ESPRIT

Total least squares ESPRIT

ESPRIT for DOA estimation

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

DOA estimation

- For all the P sources and M length ULA, the signal model is a superposition of signals from all the P sources
- ▶ The received signal at ULA is represented as:

$$\mathbf{y}(n) = [\mathbf{a}(\Delta_1), \mathbf{a}(\Delta_2), \dots, \mathbf{a}(\Delta_P)] \begin{bmatrix} s_1(n) \\ s_2(n) \\ s_3(n) \\ \vdots \\ s_P(n) \end{bmatrix} + \mathbf{w}(n)$$

 This is similar to the harmonic model, that we had considered for applying ESPRIT algorithm

• i.e.
$$\mathbf{V} = [\mathbf{a}(\Delta_1), \mathbf{a}(\Delta_2), \dots, \mathbf{a}(\Delta_P)]$$

This V can be split into staggered sub-spaces V₁ and V₂

ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcomes

Overview Frequency Estimation techniques

Harmonic model

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries Least squares ESPRIT

Total least squares ESPRIT

ESPRIT for DOA estimation

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

Analogy: "ESPRIT" and "ESPRIT for DOA"

$$\mathbf{s}(n) = \begin{bmatrix} \sum_{p=1}^{P} \alpha_p e^{j2\pi f_p n} . 1\\ \sum_{p=1}^{P} \alpha_p e^{j2\pi f_p n} . e^{j2\pi f_p}\\ ...\\ \sum_{p=1}^{P} \alpha_p e^{j2\pi f_p n} . e^{j2\pi (M-1)f_p} \end{bmatrix} = \mathbf{V} \Phi^n \alpha$$

$$\mathbf{z}(n) = \begin{bmatrix} \sum_{p=1}^{P} s_p(n) . 1\\ \sum_{p=1}^{P} s_p(n) . e^{j\Delta_p}\\ \dots\\ \sum_{p=1}^{P} s_p(n) . e^{j(M-1)\Delta_p} \end{bmatrix} = \mathbf{V}\mathbf{s}(n)$$

ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcomes

Overview Frequency Estimation techniques

Harmonic model

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries

Least squares ESPRIT

Total least squares ESPRIT

ESPRIT for DOA estimation

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

Summary

- The ESPRIT algorithm is a parametric spectrum estimation method, it is one of the super-resolution method.
- it turns out that we can use this method for DOA estimation, since both problem are one and the same, just an interchange play between frequency and phase delay terms
- ESPRIT makes use of rotational property of staggered sub spaces and comparing a match between the harmonic model and SVD of data matrix.
- It involves SVD and least squares concept.

ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcomes

Overview Frequency Estimation techniques

Harmonic model

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries Least squares ESPRIT Total least squares ESPRIT

ESPRIT for DOA

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

・ロト・日本・山田・山田・

ESPRIT algorithm and DOA estimation

Deepak Raya.V

ntroduction

Outcome

Overview Frequency Estimation techniques

Harmonic mode

Autocorrelation matrix of harmonic model

Signal subspace and noise subspace

Theoretical and Practical correlation matrix

ESPRIT algorithm

Preliminaries

Least squares ESPRIT

Total least squares ESPRIT

ESPRIT for DOA estimation

DOA and Array processing

DOA estimation

analogy between general ESPRIT and for DOA

Summary

Thank you !