
Probabilistic Co-adaptive brain computer
interfacing

V. Deepak Raya

Department of Avionics

MDPRL course project presentation , 2020



Outline

Probabilistic Co-adaptive brain computer interfacing
Introduction
POMDPs and Reinforcement Learning
BCI system description
Experimental setup
Discussion of the results



Outline

Probabilistic Co-adaptive brain computer interfacing
Introduction
POMDPs and Reinforcement Learning
BCI system description
Experimental setup
Discussion of the results



Introduction

I The Probabilistic co-adaptive approach to BCIs, provides a
unified frame-work for tackling the problems of uncertainty
and co-adaptation.

I Uncertainty: Decoding noisy brain signals
Co-adaptation: Between brain and interface, co-operatively
achieve a common goal

I This frame work is based upon POMDPs and RL

I Experimental paradigm: non-invasive BCI based on SSVEP
signals.



Outline

Probabilistic Co-adaptive brain computer interfacing
Introduction
POMDPs and Reinforcement Learning
BCI system description
Experimental setup
Discussion of the results



POMDPs

I Partial Observability + MDPs : Not such a trivial addition

I CO-MDPs give values or policy for each state, for this
solutions state is to be known completly at all times

I In POMDPs, Partial observability clouds the idea of current
state
• We add a set of observations to the MDP model, which gives

hint about the current state.
• Since the current sate is behind the clouds, the agent

maintains a probability distribution over states called as belief

I POMDPs are described by 7-tuple {S , A, Z , T , O, R, γ}



POMDPs

I Z is the set of possible observations,(using sensor
measurements), which give indirect access to the hidden
states.

I T describes the state transition probabilities, which govern
the dynamics of hidden states i.e. T (s ′, s, a) = p(s ′|s, a)

I O is the observation model, defined as the set of observation
probabilities for given action and resulting state, i.e
O(o, a, s ′) = p(o|a, s ′).



Beliefs & updating Beliefs

I Accounts for its own degree of uncertainty about the current
state

I Posterior probability distribution over the current state, given
the history.

I Uses Bayesian filtering for updating the beliefs

I

b′(s ′) = p(s ′|o, a, b)

= η p(o|s ′, a) p(s ′|a, b)

= η p(o|s ′, a)
∑
sεS

p(s ′|s, a) p(s|a, b)

= η p(o|s ′, a)
∑
sεS

p(s ′|s, a) b(s)



General overview of Solving a POMDP

I Our Goal is to derive a policy π : B −→ A
where, B is the belief space

I Which maximizes the total expected reward

I Calculating the optimal policy exactly is intractable, in general

I Algorithms exist for finding approximate solutions in
reasonable time



General overview of Solving POMDP

I Keeping things simple, we
will consider a 2 state
POMDP

I A finite horizon value
function of a POMDP, is
Piece wise linear and convex,
for every horizon length

I Each value hyperplane is
represented by a vector of
dimensions equal to # of
states



General overview of Solving POMDP

I Consider 2 actions, 2 states
and 3 observations POMDP.

I since, 2 states and 2 actions,
we have four separate
possible rewards

I let us take

a1, s1 ←→ 1

a1, s2 ←→ 0

a2, s1 ←→ 0

a2, s2 ←→ 1.5

I horizon 1 value function are
nothing but the immediate
rewards, as shown in fig



General overview of Solving POMDP

I We will go for construction
horizon 2 value function

I 3 step breakdown:

I Compute value of a belief
state, given action and
observation fixed

I Now, the value of a belief
state, for horizon 2 is, the
value of immediate action
plus the value of the next
action



General overview of Solving POMDP

I for value of another belief sate we
repeat the same process

I now, we want to find value of all
belief points, given fixed action and
observation

I Our horizon 1 value function, is a
function of transformed belief sate
b
′
, and transformed belief state is a

function of initial belief sate b,
since the action and observation is
fixed

I It turns out we can construct a
function over the entire belief
space from horizon 1



General overview of Solving POMDP

I Computing value of belief
state, given only the action.

I Since the observations are
probabilistic,we are not
guaranteed to see z1

I each observation can lead to
a separate resulting belief
state

I now the transformed value
function, factors in the
probabilities of the
observations



General overview of Solving POMDP

I So, the horizon 2 value of a
belief state, given a
particular action a1,
depends, not only on doing
a1, but also on what action
we do next.

I Now ,this depends on what
observation we get.

I this results in four useful
future strategies



General overview of Solving POMDP

I The updated value functions
and partitions, for action
a1(first figure)

I We have considered only
taking action a1, we should
also consider for action a2

I The second figure shows the
partition and value functions
for a2

I now, we have to combine
both a1 and a2 value
functions, and see which
action gives the highest
value.



General overview of Solving POMDP

I first figure shows the
combined value functions
form a1 and a2

I On selecting the value
functions, which maximizes
the value at each belief
point we get the value
function for horizon 2

I Shown in figure 2

I



For horizon 3, we do the same



SARSOP algorithm

I Point based POMDP
algorithm

I We sample points from
belief space B

I and maintain the a set Γ of
α vectors, A piece wise
linear approximation V to
V ∗

I Each α vector, represents
potentially a optimal
hyperplane, at the sampled
belief point

I To improve V back up α
vectors at the sampled belief
point



SARSOP algorithm

I The point based algorithms,
iterate over three main
functions:

1. SAMPLE
2. BACKUP
3. PRUNE

I Until further update
produces, very little change
in the value approximations

I This is the basic structure of
many point based POMDP
algorithms

I Only differ in the details of
the three main functions



SARSOP algorithm

I First, we have to build a reachable belief space(R), a subset
of belief space B

I sampled belief points form a tree X
I we select an initial belief point b0; generally a high entropy

point

I To sample a new point b
′
:

• pick b from X , select a ∈ A and z ∈ Z
• by Bayesian filtering compute the posterior belief b

′

• insert b
′

as child of b

I Every point sampled this way is reachable from b0



SARSOP algorithm

I After sampling, we perform backup at selected nodes in X
I Invocation of SAMPLE and BACKUP functions, generates

new sample points and α vectors.

I however, not all of them are useful for constructing optimal
policy, ∴ prune away some belief points and α vectors, to
increase the computational efficiency

I Avoid sampling far away from optimal reachable belief
space.(belief point pruning)

I Cost of single backup operation is directly propotional to no
of α vectors in Γ. (α vector pruning)



SARSOP:



Belief point pruning

I To use the sampled points in X as an approximation of R∗ we
must prune those points far away from R∗

I for this we maintain not only lower bound V , but also and
upper bound V on V ∗

I Consider a node b in X ,

Q(b, a) =
∑
s

R(s, a) b(s) + γ
∑
z

p(z |b, a)V (T (b, a, z))

is the lower bound on the value of taking action a at b belief
point.

I similarly the upper bound, Q(b, a) with V



Belief point pruning

I If for some action a
′

and a,

Q(b, a) < Q(b, a
′
)

at b.

I The optimal policy will never take action a, under b, and
traverse the subtree underneath it.

I thus, prune the subtree, along with the associated sample
points



α vectors pruning

I Let P denote the set of sampled belief points in X , SARSOP
prunes away an α vector if it is dominated by others over R∗ ,
which is approximated by the current P.

I if α1. b ≤ α2 . b, α2 dominates α1

I but this is not robust,Since SARSOP computes an
approximately optimal policy over P only, the computed policy
may choose an action that causes it to slightly veer off R∗

I and get into a region in which the value function
approximation is poor

I we impose more stringent dominance criteria.



α vectors pruning

I The δ-dominance criteria

I i.e dominance over a δ neighbourhood:

I α1 dominates α2 at a belief point b if α1 . b
′ ≥ α2 . b

′
at

every point b
′
, whose distance to b is less than δ, for some

fixed constant δ.



Outline

Probabilistic Co-adaptive brain computer interfacing
Introduction
POMDPs and Reinforcement Learning
BCI system description
Experimental setup
Discussion of the results



BCI system Overview

I POMDP - deals with uncertainty in users brain state and to
decide the amount of information to make confident control
decision.

I RL - To co-adapt with the user.
I User decides

I The Goal (e.g. Direction to steer a wheel chair)
I The control mapping (e.g. Which SSVEP channel (frequency

of EEG activity) maps to which action)

I



Properties to be satisfied by a BCI control problem

I State, action and observation spaces must be discrete

I Quantifiable connection between hidden state and
observations

I Problem must allow control in discrete time steps

I User and BCI must have joint awareness of the feedback from
the environment/system



SSVEP based BCI

I This BCI is EEG based BCI

I more specifically SSVEPs Steady state visually evoked
potentials are used

I SSVEP: Oscillatory potentials observed in the occipital areas
of brain, when the subject is focusing on a flickering stimuli of
certain frequency

I Response frequency is equal to stimuli frequency or harmonics
of stimuli frequency.



hardware description

I Mounted LEDs around the lower perimeter for the LCD screen

I Five frequencies 12, 15, 17, 20 and 22 Hz

I EEG recording system (256 Hz sampling frequnecy)

Figure: Stimulus device



Features and observation model

I EEG
FFT−−−−−−−→

1.0 s window
[12hz: ,15hz: ,17hz: ,20hz: ,22hz: ]

I Normalization with subject’s baseline EEG activity

I The extracted EEG features are used to build the observation
model of the POMDP

I Since the extracted features lie in continuous space, we need
to discretize it (since the observation space should be discrete
for this framework)



Discretization of observation space

I Partition the feature space and label each partition

I Easy way: uniform discretization, i.e divide each dimension of
the feature space uniformly (Grid like partition)

I Drawback: fixed grid size - too big resolution is lost, too small
results in large number of cells, scales poorly

I we need an informed method of non-uniform discretization

I use A priori information about observation function



Discretization of observation space

I Use A priori information about the observation function

1. Gaussian distribution approximation to observation function
(One gaussian for each state)

2. Use this gaussian model to make non uniform partitioning of
feature space

3. Numerically integrate each of the gaussians within each
partition to derive the discretized observation function p(O|S)

I Estimate a Gaussian distribution for the features, given each
brain state

I i.e. we fit a gaussian in our feature space, for each state based
on users training data



Discretization of observation space

I Estimate a Gaussian distribution for the features, given each
brain state, which gives, continuous approximation to p(O|S)

I All points in the space, that yield equivalent ”evidence” forms
a partition

I Since, no observations once we reach final state, and other
transitions leading to non-terminal state are determinsitic, the
belief update equation reduces to:

bt+1(st+1) = η p(o|st+1bt(st+1)

I

evidence =
bt+1(st+1)

bt(st+1)
= η p(o|st+1)



I

evidence =
bt+1(st+1)

bt(st+1)
= η p(o|st+1)

I Suppose, we have two states and our prior belief is:

bt =

(
p(s1) = 0.3
p(s2) = 0.7

)
suppose that two possible observations give(

p(O|S = s1) = 0.0025
p(O|S = s2) = 0.0075

)
and (

p(O|S = s1) = 0.005
p(O|S = s2) = 0.0015

)
this results in a posterior belief

bt+1 =

(
p(s1) = 0.125
p(s2) = 0.875

)
I Two observations yield equivalent evidence.



Discretization of observation space

I Calculate partition based on evidence

I Create a high reoslution grid in our feature space within some
finite bounds

I finite bounds - rectangle sides a large mahalalobis distance
from the means of gaussian for all classes.

I cal vectors p(o|S), at each grid point o, which we normalize
to sum 1.

I call this vector an evidence vector

I each element of the evidence vector is given an integer label
in [1, n]

I labeli = round( (n − 1) ∗ (evidencei ) + 1 )
The output of this is a vector of labels, for each point in the
grid.

I Finally, we assign a discrete observation label, to every unique
value these vectors take



Discretization of observation space

I This method generates more discretized areas as the
dimensionality of the observation model increase

I K-means among centroids of discretized areas to prevent the
combinatorial explosion



POMDP model of the BCI system

I The POMDP has one state for each available SSVEP
stimulus, and one terminal state for each possible control
action.

Figure: State transition diagram

I For the this simplest experiment,the state space is
S = {s15Hz , s20Hz , sleft , sright}

I action space is A = {await , aleft , aright}



POMDP model of the BCI system
I The observation space is obtained by discretizing the EEG

feature space. O = {o1, o2, ...., on}
I The transition model, in present implementation is

deterministic
I The observation model depends highly on specific user, as

does the discretization of users feature space.
I The BCI automatically adapts the reward function during

co-adaptive experiments, as it accumulates experience
through reinforcement learning.

I In few other experiments, the reward is fixed, for evaluation.

Figure: Reward matrix



Reinforcement based learning and co-adaptation

I Basic POMDP model
+ feedback mechanism−−−−−−−−−−−−−→ Adaptive control

model.

I To infer users intended control mapping (which stimulus to
which control o/p)

I feedback tells us whether, co-operation between the user and
BCI was successful at accomplishing the task.

I The BCI will identify the users control mapping over time.

I The BCI receives adverse feedback from environment, If the
user and BCI do not agree on a control mapping.



Assumptions to implement the system

1. All available brain states map to some control output.

2. All possible control output map to at least one brain state.

3. The user/system designer can express the relative cost of
failure and benefit of success.(rfailure , rsuccess)

I Using these 3 assumptions, the authors demonstrate three
co-adaptive systems
• Two frequencies and two outputs case
• five frequencies and two outputs case
• three frequencies and three outputs case



Two frequencies and two outputs

I Given the three assumptions , this case exploration is not
necessary

I There are only two admissible control mappings, suppose that
BCI identifies current state as s15Hz , choose action aleft ,
receives feedback rsuccess , since the control was successful in
this case, we can conclude that exploiting the control mapping
from s20Hz to aright is also a success

I we also know the cost of failure rfailure , ∴ regardless of the
decision we make and feedback we get, we will effectively
receive the same information and will be able to update all
four elements of reward.

I Thus, there is no extra information that we get by exploration

I Hence, exploitation is strictly better choice.



Two frequencies and two outputs

I The reinforcement algorithm for reward update is

R̂(s, a) ← αβ(rsuccess − R̂(s, a)) + R̂(s, a)

I (s, a), is a member of successful control mapping
α, is learning rate
β = max(bt), is confidence in current state



Five frequencies and two outputs

I In this case it is not possible to update every element of the
reward function in each trial.

I however,we don’t make explicit use of exploration, user is
implicitly engaged in a form of exploration.

I if user chooses 15Hz channel with an intent of aleft
(15Hz, aleft) ← positive reinforcement
(15Hz, aright) ← negative reinforcement

I User explores various input channels, each will independently
learn a control mapping.



Three frequencies and three outputs

I Since, there are more than two control outputs, we need an
explicit exploration.

I For exploration we use ”softmax action selection” strategy.

for (ai ∈ A) : Aw (ai ) =
∑
si∈S

b(s)R(s, ai )

This is used to derive distribution over action

P(ai ) =
exp

Aw (ai )

τ∑
aj∈A exp

Aw (aj)

τ



Outline

Probabilistic Co-adaptive brain computer interfacing
Introduction
POMDPs and Reinforcement Learning
BCI system description
Experimental setup
Discussion of the results



Experimental setup

I Session 1: open loop experiment, to collect training data
six trails per state, arrow on LCD as a cue to focus on one
SSVEP stimulus
This training data was used to train the POMDP observation
model.

I Session 2: Baseline reading of EEG for each user

I Next 6 Sessions: six trials per state/stimulus
used as test data set for offline experiments

I Subsequent session: closed loop co-adaptive experiments
three sets of co-adaptive experiments.





Outline

Probabilistic Co-adaptive brain computer interfacing
Introduction
POMDPs and Reinforcement Learning
BCI system description
Experimental setup
Discussion of the results



Speed accuracy trade-off



Adaptation to user’s SNR

I optimal POMDP policy not
only depends on observation
model for specific user

I If the observations are noisy,
collecting additional
information is less useful

I BCI will lower the confidence
threshold, avoid some of the
penalty for waiting.

I H(S |O) is used to quantify
this effect.



Co-adaptation in the POMDP BCI



References

Matthew J Bryan, Stefan A Martin,Willy Cheung
and Rajesh P N Rao.
Probabilistic co-adaptive brain computer interfacing
Journal of Neural engineering 2013.

David Hsu, Wee Sun Lee, and Nan Rong.
Accelerating Point-Based POMDP Algorithms through
Successive Approximations of the Optimal Reachable Space
Technical report, NUS, School of computing, Singapore 2006.

POMDPs for Dummies article, by computer science
department of Brown university.
http://cs.brown.edu/research/ai/pomdp/tutorial/index.html


	Probabilistic Co-adaptive brain computer interfacing
	Introduction
	POMDPs and Reinforcement Learning
	BCI system description
	Experimental setup
	Discussion of the results


